
Interesting feature

Cross-Platform Development
with the SDK

Apache Cordova :: the framework
 formerly known as PhoneGap

EnyoJS, Phonegap and node.js for
Cross-Platform-Development:

Developing a todo application

Hybrid Applications Help
Relieve Cross Platform Pain

PLUS
Continuous Deployment in Perl: Code & Folks Dancing Polonaise
With Perl Native Mobile Apps with ASP.NET MVC Clean Coding OCTREES
Porting existing web applications to Windows Azure O/RMs Dissected

Issue 02/2012 (4)
ISSN: 1734-3933

extra

Porting GCC to a new target
THE CASE OF ATARI ST COMPUTERS

02/2012	 en.sdjournal.org

http://alphafive.com/get-it-free

02/2012	 en.sdjournal.org 3

Editor’s Note

Der Readers!
We are giving in your hands the fourth issue of
Software Developer’s Journal. We hope you’ve
enjoyed previous ones.
In this issue you will find interesting articles about
most up to date devices and solutions from cross
platform development, programming in Pearl
language and other various topics from software
development field.
The authors, who have contributed to this issue,
should be proud of themselves. We are sure you will
read this issue from cover to cover.

We begin with the chapter concerning Cross
Platform Development that contains five
fascinating articles from this field.
At the beginning we present you brilliant Vincent
Riviere’s article about porting GCC to a new target
based on the case of Atari ST computers.
The next article written by Jerome St-Louis crross-
platform development with the SDK. From the next
article by Jesse MacFadyen you will learn about
Apache Cordova - the framework formerly known
as PhoneGap.

Then Robert Kowalski writes about EnyoJS,
Phonegap and node.js for cross platform
development: developing a todo application.
And the last but not least article is written by
Andrew Smith titled “Hybrid Applications Help
Relieve Cross Platform Pain”.
The second chapter concerns programming in
Pearl language and consists of two articles.
From the first one written by Alexandre Masselot
and Pierre-Antoine Queloz you will learn about
continuous deployment in Perl.
The second article is titled “Dancing Polonaise
With Perl” and its autor is Alberto Simoes and Nuno
Carvalho.

The last chapter contains six various articles from
software development in general.
We begin with Daniel Jebaraj’s terrific article about
native mobile apps with ASP.NET MVC.
Then we serve you something completely different
which is article about clean coding by Łukasz Kieda.
After that you can read about structures that help
in spatially partitioning large sets of data called
Octrees in article written by Adrian Jurca. In the
following article Gunnar Peipman will tell you about
porting existing web applications to Windows Azure.
The next hot topic is Object/Relational Mapping or
O/RM great explained by Ricardo Peres.
In the last article in this chapter its autor Toby
Osbourn wanted to outline his thoughts on how
developers can leverage social media to our
advantage whilst we do a variety of things.

Enjoy the reading!
Sylwia Wilk
and Software Developer’s Journal Team

Managing Editor: Sylwia Wilk
sylwia.wilk@software.com.pl

Senior Consultant/Publisher: Paweł Marciniak

Editor in Chief: Grzegorz Tabaka
grzegorz.tabaka@software.com.pl

Art Director: Anna Wojtarowicz
anna.wojtarowicz@software.com.pl

DTP: Anna Wojtarowicz
anna.wojtarowicz@software.com.pl

Production Director: Andrzej Kuca
andrzej.kuca@software.com.pl

Marketing Director: Sylwia Wilk
sylwia.wilk@software.com.pl

Proofreadres: Dan Dieterle, Aby Rao

Betatesters: Pawel Brzek, Dawid Esterhuizen
(MBA), Laszlo Acs, Da Co, Demazy Mbella

Publisher: Software Media Sp. z o.o.
02-682 Warszawa, ul. Bokserska 1
Phone: 1 917 338 3631
www.sdjournal.org/en

Whilst every eff ort has been made to ensure the
high quality of the magazine, the editors make
no warranty, express or implied, concerning the
results of content usage.

All trade marks presented in the magazine were
used only for informative purposes.
All rights to trade marks presented in the maga-
zine are reserved by the companies which own
them.

To create graphs and diagrams we used program
by Mathematical formulas created by Design
Science MathType™

DISCLAIMER!
The techniques described in our articles may
only be used in private, local networks.
The editors hold no responsibility for misuse of
the presented techniques or consequent data
loss.

mailto://sylwia.wilk@software.com.pl
mailto://grzegorz.tabaka@software.com.pl
mailto://anna.wojtarowicz@software.com.pl
mailto://anna.wojtarowicz@software.com.pl
mailto://andrzej.kuca@software.com.pl
mailto://sylwia.wilk@software.com.pl
http://alphafive.com/get-it-free

4

Table of Contents

02/2012	 en.sdjournal.org

CROSS PLATFORM DEVELOPMENT

06 Porting GCC to a new target.
The case of Atari ST computers
by Vincent Riviere
In this article, the autor will describe the
internals of the GNU toolchain, and he will
show you how to port it to a new target
by patching the binutils and GCC sources.
The autor will use the example of the Ata-
ri ST, referred as the “MiNT target”, but the
information will be general enough to be
useful for any other target. The autor will
first make a brief reminder on the key steps
about building an executable, then he will
focus on the 2 major parts of the GNU tool-
chain: binutils and GCC.

12 Cross-Platform Development with
the SDK
by Jerome St-Louis
At the moment of writing, applications
built with the SDK will work on Windows
and Linux. It is also possible to build the
SDK and the applications on other plat-
forms, such as Mac OS X and FreeBSD, but
there are still some minor issues to be re-
solved. Mobile platforms such as Android
and iPad/iPhone are also targets we hope
to support in the near future. The gene-
ral idea is that you write your application
once, with no particular attention to plat-
forms, and then the exact same source
code can be compiled and deployed for all
supported platforms.

26 Apache Cordova :: the framework
formerly known as PhoneGap
by Jesse MacFadyen
PhoneGap is a collection of tools, and libra-
ries that allow you to build native mobile
applications for multiple devices. Phone-
Gap supports the development of portable
application code that can run on Apple iOS
iPhones, iPads, iPods, all Android devices,
Windows Phone 7 devices, BlackBerry pho-
nes and PlayBooks, HP WebOS phones and
TouchPad, as well as Symbian and Sam-
sung Bada devices. PhoneGap embraces
web technology, so web developers can
leverage their existing skills and write their
applications in HTML, CSS, and JavaScript.

34 EnyoJS, Phonegap and node.js for
Cross-Platform-Development:

	 Developing a todo application
by Robert Kowalski
In most companies that want to go mobile
with apps and possibly with a mobile site
alot of skilled web developers are wor-
king inhouse already. They can use HTML5
and cross-platform tools to create their
applications. But action games or other
performance-criticial applications are
currently no target for HTML5 cross-plat-
form-developing. For most other use ca-
ses HTML5 can be used with good results.
There exist alot of cross-plattform-deve-
lopment tools and frameworks, This article
focuses on the Enyo framework, packing
it as native app for iOS or Android and de-
ploying it as mobile webapp.

42 Hybrid Applications Help Relieve
Cross Platform Pain
by Andrew Smith
As mobile device technology has impro-
ved, HTML5 has become a real option for
creating a single user interface for both
native applications as well as for the Web.
Many giants in technology believe that
HTML5 will eventually be the only cross-
-platform programming language. Chan-
ces are good that in the future HTML5 will
be the vernacular for everything mobile.
Rather than writing an application native-
ly for each and every mobile platform, and
then once again for the mobile web, con-
sider this instead. Set up web services to
handle any server-side data manipulation
your application might need to provide
and use HTML5 to create and maintain a
single user interface. A novel approach to
native applications known as hybrid appli-
cations could be your answer.

5

Table of Contents

02/2012	 en.sdjournal.org

PROGRAMMING IN PEARL
LANGUAGE

48 Continuous Deployment in Perl:
Code & Folks
by Alexandre Masselot
and Pierre-Antoine Queloz
Continuous Integration is the tactic of de-
creasing the latency between the imple-
mentation of a new piece of code and its
integration in the overall project. It is the
backbone of Continuous Deployment that
is often defined as releasing software very
frequently in order to satisfy customer ne-
eds and get their feedback as soon as po-
ssible. Both have shown their benefits and
play an important role in the success of the
current Agile software development trend.

56 Dancing Polonaise With Perl
by Alberto Simoes
In the last year the size of the Dancer com-
munity has quadrupled, and the number
of Dancer websites is, every day, larger.
With this article you will learn how to bo-
otstrap a Dancer website, how to run it lo-
cally for development purposes, and how
to develop a complete Dancer application.

SOFTWARE DEVELOPMENT

62 Native Mobile Apps with ASP.NET
MVC
by Daniel Jebaraj
Smartphones and other mobile devices
such as tablets are everywhere. They are
available at multiple price points and are
increasingly affordable. In fact, for many in
the developing world, their only computer
is the powerful smartphone they own.

68 Clean Coding
by Łukasz Kieda
If you have ever read code written by ano-
ther person, you were probably having
difficult time figuring out what was the
author’s intention and what is the actual
workflow of the algorithm. Therefore it is
common practice to let the author fix bugs
in his own code should problems arise.
Nevertheless, even your own code tends
to become more difficult to understand as
the time passes.

76 Octrees
by Adrian Jurca
Octrees are structures that help in spatial-
ly partitioning large sets of data. They can
be viewed as an implementation of hierar-
chical clustering in which the data is recur-
sively split in smaller, more manageable
chunks. Octrees can have many uses but
are mostly used in game development to
speed up certain tasks that would otherwi-
se take too much time to complete.

80 Porting existing web applications to
Windows Azure
by Gunnar Peipman
Windows Azure is a good offer for sites
and services that need to scale. Windows
Azure is Microsoft cloud services system
that offers the following services: hosting
and scaling of web sites and background
services; cloud-based storage (blobs, qu-
eues and tables); SQL Azure database; SQL
reporting services; cloud-based cache; en-
terprise service bus; access control servi-
ces.

86 O/RMs Dissected
by Ricardo Peres
Object/Relational Mapping, or O/RM, is a
hot topic. Talk is everywhere, it seems that
new O/RM libraries pop up every month -
everyone is writing their own, and Micro-
soft itself is putting a considerable amount
of its weight behind its own solution. So,
what exactly is an O/RM for, and why sho-
uld you care?

92 How we can use social networks?
By Toby Osbourn
The autor wanted to outline his thoughts
on how we as developers can leverage so-
cial media to our advantage whilst we do
a variety of things. The reason he wants to
do this is that whilst design and gaming in-
dustries have leveraged social media well,
as developers we are maybe falling behind
somewhat.

CROSS PLATFORM DEVELOPMENT

6 02/2012	 en.sdjournal.org

10 years ago, I was looking for a solution to use mod-
ern C and C++ on embedded devices. I naturally se-
lected GCC, the famous GNU Compiler Collection, and
I chose my favorite target as a training device: the Atari
ST. I discovered that there was still an active commu-
nity around the MiNT kernel, using an old GCC version.
So I decided to port the GCC patches to newer versions,
and I still maintain them today. On my website, I pro-
vide a complete GCC toolchain for building Atari ST ex-
ecutables from Cygwin, Ubuntu or other operating sys-
tems. Some people even use my patches for building a
native toolchain running on modern Atari computers.

In this article, I will describe the internals of the GNU
toolchain, and I will show you how to port it to a new
target by patching the binutils and GCC sources. I will
use the example of the Atari ST, referred as the “MiNT
target”, but the information will be general enough to
be useful for any other target. I will first make a brief
reminder on the key steps about building an execut-
able, then I will focus on the 2 major parts of the GNU
toolchain: binutils and GCC.

How executables are produced
A program is made of one or more source files (C,

C++, assembly...) combined into a single executable.
The compilation process is usually transparent, but sev-
eral intermediate files are generated during the pro-
cess. This is important to know the overall process in
order to understand which tools will be required in a
cross-compilation environment (Figure 1).

In a GNU toolchain, the high-level tools (preproces-
sor, compiler) are provided by the GCC package, while
the low-level tools (assembler, linker) are provided by
the binutils package.

Porting GCC to a new target
The case of Atari ST computers
Cross-compilation is comfortable. You build software on your modern
computer, then you can run the resulting binary on the target machine or
on an emulator. This is the only way to go for cell phones, game consoles
or embedded devices. This is also useful for retrocomputing, where
modern development tools are not usable on the target machines.

The Atari ST computer and its successors were
very popular between 1985 and 1995. The
original processor was a Motorola 68000 at 8
MHz. The operating system was named TOS.
Internally, it was inspired from MS-DOS, while
externally it looked similar to the Macintosh.
In 1993, a new kernel named MiNT appeared,
bringing multitasking and POSIX compatibility to
the TOS computers. Today the Atari community
is still active, with hardware extensions like
the CT60/CTPCI, and even new computers
like the FireBee. The kernel has become Free
Software and is now called FreeMiNT.

Figure 1: Typical workflow for building executables

Porting GCC to a new target. The case of Atari ST computers

702/2012	 en.sdjournal.org

Executable file format
When porting a toolchain to a new target, the first

question is how to configure the linker to produce
the right file format. Adding a new executable format
from scratch is a big deal, so usually it is easier to make
changes to an existing one.

The original TOS/MiNT executable format is rather
simple. It is composed of a small header followed by
the TEXT and DATA segments, and an optional symbol
table used only by debuggers. Since TOS and MiNT
don’t support virtual memory, the executables are
loaded at a random address in the physical memory.
Thus executables also contains a relocation table for
fixing the references to absolute addresses.

That being said, people who originally ported the
GNU toolchain to MiNT in the Nineties noticed that the
file format was actually very close to the a.out format
used in early UNIX versions. So they wrote support for
the MiNT/TOS executable format as a variant of a.out.
The benefit is huge: since all the binutils tools already
support a.out, they will be compatible with the MiNT/
TOS executable format. Note that the a.out format is
now obsolete, new ports should use the modern ELF
format instead.

Note: a.out can refer to 2 completely different
things that must not be confused:
- the original UNIX object file format
- the default filename for gcc output

Configuration names: triplets
In a cross-compilation environment, each system

is identified by a configuration name (often referred
as triplet), composed by 3 or 4 parts in the form cpu-
manufacturer[-kernel]-os. For example:

-- GNU/Linux: i686-pc-linux-gnu
-- Cygwin: i686-pc-cygwin
-- MiNT: m68k-atari-mint

Typically, building a cross-compiler involves 3 triplets:
-- The build system, where the cross-compiler is built.
-- The host system, where the cross-compiler will run.
-- The target system, for which the new cross-compil 	

er will build executables.

The target triplet is used in several ways:
-- As prefix for the cross-tools commands. While gcc is

the native compiler for the build system, m68k-at-
ari-mint-gcc is the cross-compiler for the MiNT
target. Same for as, ld and so on.

-- As subdirectory for the target development files.
For example, the native libraries are stored in /usr/
lib as usual, while the target libraries are stored
in /usr/m68k-atari-mint/lib. Similarly, the

native includes reside in /usr/include while the
target includes are in /usr/m68k-atari-mint/
include.

On the build system, the cross-tools such as m68k-
atari-mint-gcc are normally installed in /usr/
bin along with native commands, away from other
target files. This means that the cross-tools compo-
nents are scattered in several directories. This is not a
problem on systems such as Ubuntu where the files
are installed by a robust package manager. In contrast,
on Cygwin, there is no easy way to provide third-party
software, so I chose to provide a custom automated in-
staller which installs everything in /opt/cross-mint
instead of /usr. As a result, all the cross-tools files can
be easily uninstalled.

The GNU Autotools (mainly Autoconf and Automake)
allow the creation of portable source packages, inc-
luding the popular configure script. They fully support
cross-compilation. The main configure options are:
--host to enable cross-compilation mode and
specify the system where the binaries will run.

--prefix to indicate where make install will
install the files, which defaults to /usr.
--target used only when building cross-to-
ols like binutils or GCC, to specify for which sys-
tem the executables will be produced.
During the configuration phase, the actual ma-
kefiles are instantiated from templates, so make
automatically uses the right cross-tools.

The binutils: assembler and linker
The most basic operation is to transform an assem-

bly source file into a compiled object file. This is the job
of gas, the GNU assembler. Then multiple object files
have to be combined into a single executable. That’s a
job for ld, the linker.

Object files contain several sections.
The typical ones are:

.text: The machine code, namely the
compiled function bodies. Read-only.

.rodata
Read-only data, including const
global variables and string literals.
Merged with .text section in a.out files.

.data: Initialized global variables. Read/write.

.bss:
Global variables initialized
to 0, including uninitialized
global C variables.

CROSS PLATFORM DEVELOPMENT

8 02/2012	 en.sdjournal.org

When linking, the sections of the object files (input
sections) are merged into sections in the executable
file (output sections), which will then be loaded into
memory segments at run time. This process is precisely
described in the target linker script.

Depending on the target OS and the compiler type,
the object file format differs.

COMMON OBJECT FILE FORMATS

a.out: 	Initial object file format used on UNIX systems, 	
	 now obsolete. It can only contain .text, .data 	
	 and .bss sections.

COFF: 	Supports multiple named sections, with some 	
	 limitations. Also supports shared libraries. Still 	
	 in use today on Microsoft Windows.

ELF: 	 The most versatile object file format, now 	
	 widely used on most UNIX-like systems (includ	
	 ing Linux) and embedded systems. It allows any
	 sections, and supports any processor or 		
	 architecture.

Since there are many different object file formats
and several generic tools, the binutils team chose to
move all the functions for manipulating specific file
formats to a library named BFD (Binary File Descriptor).
Having this common library allows all the tools to ma-
nipulate the object files in the same way by calling the
BFD functions. Basically, when support for a new object
file format is added to BFD, all the tools such as gas or
ld are able to handle it.

For the m68k-atari-mint target, the standard a.out-
zero-big format was chosen as intermediate object
file format, while a custom executable format named
a.out-mintprg was developed to be compatible with
both the TOS/MiNT operating systems and the GNU
tools.

In the binutils vocabulary, m68k refers to the whole
range of Motorola/Freescale 32-bit processors from
68000 to 68060 and ColdFire. They use big-endian
byte order (most significant byte stored first),
unlike Intel processors.

Adding new target support
Now we see the big picture to port the binutils to

the MiNT platform:

1.	 gas must be configured to use the a.out-zero-big
object file format.

2.	The BFD library must be patched to support the
a.out-mintprg executable format, as an a.out variant.

This includes a custom file header, the standard
a.out sections, the debug information, and the TOS
relocation table.

3.	Various configure and makefile fragments must be
patched to add the new m68k-atari-mint triplet as a
supported target.

Basically, specific support for an object file format
in BFD is called a “back-end”. Each back-end provi-
des a bfd_target structure (a.k.a target vector) conta-
ining a set of functions to identify and manipulate
the supported format. The main configuration file is
bfd/config.bfd where each target triplet is associated
to a default target vector targ_defvec to define the
object file format used by gas, and additional target
vectors targ_selvecs which may used by ld as input
or output.

The gas configuration is minimal. The CPU is de-
ducted from the target triplet, and the object file for-
mat is always BFD’s default one. Optionally, a file gas/
config/te-*.h can be added to fine tune the assembler
behavior.

The ld configuration is more complicated. A specific
target can support multiple linker styles, named emu-
lations. This allows the linker to produce different exe-
cutable formats, for example a.out and ELF. The MiNT
target defines a single emulation named m68kmint.
The emulations are associated to the target triplets in
ld/configure.tgt.

The emulations themselves are parameterized in
small shell scripts located in the ld/emulparams sub-
directory. They define some variables, such as the
linker script template to be used and an optional extra
emulation file. All those fragments are then processed
by ld/genscripts.sh to produce the actual emulation
source files.

The extra emulation file is actually a C source wrap-
ped into a shell script to allow the usage of configu-
ration parameters. This source file allows customi-
zing the default linker behavior by overriding some
callbacks, and defining additional ld command-line
parameters.

The linker script template is located in ld/scripttempl.
It is a shell script which is used to generate all the linker
script variants. A linker script selects the output execut-
able format and describes precisely how to combine
the sections from the input object files to the sections
of the output executable.

Finally, the typical configuration of the binutils is:

configure --target=m68k-atari-mint

Porting GCC to a new target. The case of Atari ST computers

902/2012	 en.sdjournal.org

GCC: the C and C++ compilers
Thanks to the binutils, we can assemble and link assem-

bly source files into a target executable. Now we need to
convert C and C++ source files into assembly source files.
This is the job of GCC, the GNU Compiler Collection.

Porting GCC to a new target is less complicated than
the binutils, thanks to its huge flexibility. Most proces-
sors are already supported and ready to use, including
the m68k processors used by the MiNT target.

The main configuration file is gcc/config.gcc. It is a shell
script which associates the target triplet to a few varia-
bles describing the target machine. This information will
be used to generate the tm.h file included by the gcc
sources and to provide customizations to the makefiles.

The first important variable is tm_file. It is a list of inc-
lude files which will be put in tm.h. A target can use a mix
of standard include files and specific ones. The MiNT tar-
get uses a single include named gcc/config/m68k/mint.h.
This is the core GCC configuration file. It contains macros
to tweak the assembly code generation; it also conta-
ins implicit target defines such as _ _ MINT _ _ , as
well as mappings from compiler options to additional
defines, alignment constraints, and other options. All
the macros override the defaults from gcc/config/m68k/
m68k.h, which are appropriate in most cases.

Back to gcc/config.gcc, the tm_defines variable con-
tains additional defines which will be put into tm.h, as
a way to customize the behavior of standard tm files.

Last but not least, the tmake_file variable contains a list
of makefile fragments which are used to build GCC. Again,
a mix of standard and custom files can be used. The MiNT
target uses this method to configure the multilibs.

Multilibs is a solution to provide libraries for multiple
processor variants. Typical differences are the CPU fe-
atures (68000, 68020, ColdFire...), FPU support or not,
size of the int type... The libraries are compiled multi-
ple times, once per multilib variant. When linking a user
program, the right library variant is automatically used.
This feature is also used on x86_64 systems to build 32-
bit software.

That’s enough to build a cross-compiler for the tar-
get, able to compile a C file into a target object file. Dur-
ing the build process, that new compiler is available as
gcc/xgcc and is used to build the target libraries.

Normal programs require a few additional libraries.
For example, some basic operations commonly found in
high level languages may not be directly supported by
all processors or multilibs. This includes float operations,
big integer manipulation functions, etc. Those opera-
tions are supported by GCC through the library libgcc.
Even full C++ support is shipped with GCC through the

libstdc++-v3 library. Amazingly, fancy C++ features such
as exceptions, iostream, and templates are immediately
available. But GCC lacks a standard library (Figure 2).

The typical configuration of GCC is:
configure --target=m68k-atari-
mint –enable-languages=”c,c++”

The standard library
Your first C program was probably something like:
#include <stdio.h>
int main(int argc, char* argv[])
{ printf(“Hello world!\n”);
return 0;
}

But even in this trivial example, there are many ele-
ments which are not directly handled by GCC, and
which must be provided by a standard library, which is
generally named libc. The printf() body comes from
libc, as well as the corresponding stdio.h header. Less
obvious, the standard library also provides the startup
code. It is actually the real entry point of the program.
The startup code is in charge of initializing the process,
getting the command line and environment variables
from the OS, then calling the main() function. When
main() exits, the startup code terminates the process
and forwards the return code to the OS.

Most GNU/Linux systems use GLIBC, the GNU stan-
dard library. It is very complete, but rather huge, and
is mainly designed for UNIX-like systems. There are
other alternatives. Red Hat’s Newlib is very portable,
and intended for embedded systems. Cygwin also uses
Newlib. There are other standard libraries like uClibc
or dietlibc which tries to be as small as possible. The
underlying OS is generally called through the syscall()
function on UNIX-like systems, or inline assembly in C
headers on other systems such as MiNT.

The MiNT target uses the MiNTLib as its standard library.
This is a remarkable compatibility layer. It is a subset of

Figure 2: Compiling source files

CROSS PLATFORM DEVELOPMENT

10 02/2012	 en.sdjournal.org

earlier GLIBC. It features the standard C functions, as well
as most POSIX system calls. Of course it prefers running
on a modern MiNT kernel, but when this is not present
the MiNTLib functions fall back on old TOS system calls for
compatibility and reduced functionality. For example, ex-
ecutables linked with the MiNTLib can use long filenames
when MiNT is present, but they also work unmodified on
plain TOS with short file names. In practice, most GNU/
Linux command-line software can be compiled out of the
box for the MiNT target, thanks to the MiNTLib.

The companion of the standard library is the standard
math library. Basically, it contains all math.h functions,
such as sin(), sqrt(), etc. Surprisingly, there is no stan-
dard implementation. GLIBC has its own math library,
Newlib has its one... Most of them are derived from Sun’s
fdlibm. In my MiNT cross-tools, I use the old PML library
because it was the first I found, and it works well enough.

Finally, after all this effort, we can use our homebrew
toolchain to compile a standard “Hello, World” for the target.

Current tools versions on the MiNT target
binutils: 	 2.22
GCC: 	 4.6.2
MiNTLib: 	 CVS version
GDB: 	 5.1, sorely outdated

GDB: the debugger
Sometimes things do not work as we expect, and it

is useful to run the programs step by step in order to
examine the variables. This is the purpose of gdb, the
GNU debugger.

gdb uses the BFD library from the binutils. As a re-
sult, it can load any executable format and its debug
information for source debugging. The debugged
process is driven using the ptrace() system call, or
any other mechanism. gdb provides an interface for

reading the target process registers, setting breakpo-
ints, and facilitating other debugging tasks.

Things are more complicated when cross-debug-
ging, because gdb and the target process do not run
on the same host. To solve this issue, gdb provide a
small stub named gdbserver which runs on the tar-
get machine. Its responsibility is to act as a proxy be-
tween gdb and the target processes. gdb and gdb-
server can communicate via TCP/IP. There are also
gdb implementations where gdb can directly debug
processes from hardware evaluation boards.

gdb needs a few configuration elements in addition to
the BFD library. Basically, gdb/configure.host indicates the
configuration to use when gdb itself runs natively on the
target. On the MiNT target, this leads to gdb/config/m68k/
mint.mh, which is a makefile fragment indicating the files
to build for the native gdb. The target gdbserver used
to be in a separate subdirectory in the old GDB 5.x, but
things are quite different in modern versions.

Finally, the the cross-debugger m68k-atari-
mint-gdb can be used to remotely debug a target
process. It can even be used with standard graphical
front-ends such as DDD (Figure 3).

Caveats
The binutils and GCC sources are huge. Compiling

them takes a while. When something goes wrong, it is
sometimes complicated to find the initial cause of the
problem among generated sources and makefile frag-
ments. Fortunately, the GNU tools are extremely popu-
lar and there are a lot of discussions on the web. Search-
ing for the right keyword can bring lots of information.
The official documentation and mailing lists are a major
source of information and mutual assistance. Some-
times real bugs are found; then one should submit bug
reports in the project’s bug tracker and help solve them.

Figure 2: Debugging session using Cygwin, ARAnyM, gdb and DDD

Porting GCC to a new target. The case of Atari ST computers

1102/2012	 en.sdjournal.org

While the binutils are standalone, GCC and the stan-
dard library have inter-dependencies making the bu-
ild process tricky. GCC has explicit support for building
GLIBC and Newlib in the same source tree for ease of
use, but it is more complicated with a third-party stan-
dard library. Personally, I build the first GCC stage with
make all-gcc, then I build the MiNTLib and PML
using the temporary xgcc, and finally I go back to GCC
to build the remaining parts with make. This is not the
cleanest solution but it works well in practice.

GDB 5.1 works fine on MiNT, but I didn’t finish port-
ing patches to newer versions. Also GCC 4.x seems to
sometimes produce invalid STABS debug information
on a.out targets, which makes source debugging al-
most unusable. I will have to investigate that.

Going further
Using the standard library is generally a good thing,

but not always. It can quickly increase the size of the final
executable on targets only supporting static libraries. So-
metimes there is simply no standard library available, for
example when building firmware or operating systems
(such as the EmuTOS replacement ROM or the FreeMiNT
kernel). Such situations are named freestanding environ-
ments. GCC supports them without trouble. One will just
have to compile using the options -ffreestanding
-nostartfiles and -nodefaultlibs. Also one will
have to provide the startup code and system interface,
or implement a method of direct hardware usage.

For example, I built custom Amiga ROMs with the
MiNT GCC without any trouble. I also saw Sega Mega
Drive/Genesis enthusiasts using my MiNT toolchain
as a direct replacement for their older one. I also use
this toolchain to write software for ColdFire evaluation
boards and the FireBee.

Some standard GCC targets can exclusively be bu-
ilt for freestanding environments, such as the generic
m68k-elf target. It does not require any standard libra-
ry, and uses the powerful ELF object file format. The
executable format can optionally be fine tuned with a
custom linker script, then converted to raw binary form
with the objcopy tool.

I must also mention Mentor Graphics’ Sourcery Code-
Bench Lite, which is a collection of GNU toolchains for
most popular embedded targets. The m68k-elf target
described above is available for ColdFire and shipped
with Newlib. Those toolchains are free and ready to
use, moreover they also contains very valuable docu-
mentation about the generic GNU tools.

As a long term project, I would like to get rid of the
obsolete a.out object file format in the MiNT target,
and replace it by the modern ELF format and DWARF
debugging information. I got promising success by

mixing ELF object files and a.out executables, but the
debug information was lost. Ideally, a new executable
format should be created, mixing MiNT/TOS system re-
quirements and ELF features. That’s pretty challenging.

Conclusion
In this article, I briefly described the main steps to

port the full GNU toolchain to a new target. This can be
tricky, it requires good knowledge of the overall tools
and processes, as well as solid skills in C, make and bash.
The path is long and sometimes difficult, but it’s worth
the trouble it takes. When everything is put together,
using the cross-compiler is just as easy as using a na-
tive compiler. It combines comfortable development
on a fast machine, and the production of high quality
executables for the target machine. Compared to emu-
lators, this really reduces the development cycle. While
some veterans still use the native tools on the target
computer to feel like the old good days, more profes-
sional developers will prefer cross-compilation.

Credits
I would like to thank Guido Flohr and the late Frank

Naumann for their initial port of the GNU toolchain
to the MiNT platform. Patrice Mandin, who shared his
toolchain work on his website, which gave me the the
courage to start this adventure 10 years ago. Cédric
Souchon, for letting me know GCC and cross-compil-
ers when we were students. And all the people on the
MiNT Mailing List who actively use my MiNT patches.

ON THE WEB:
Vincent Rivière’s cross-tools for MiNT
http://vincent.riviere.free.fr/soft/m68k-atari-mint/
Binutils http://www.gnu.org/software/binutils/
GCC http://gcc.gnu.org/

Vincent Rivière
Vincent Rivière is a French software engineer. He has
14 years of experience in various development do-
mains including video games, industry, web, finance
and education. In his spare time, he is interested in
retrocomputing, embedded systems, emulators and
cross-compilers. Vincent currently works as develop-
er at the University Paris 1 Panthéon-Sorbonne.

Contact: vincent.riviere@freesbee.fr

http://vincent.riviere.free.fr/soft/m68k-atari-mint/
http://www.gnu.org/software/binutils/
http://gcc.gnu.org/
mailto://vincent.riviere@freesbee.fr
http://acp.atari.org

CROSS PLATFORM DEVELOPMENT

12 02/2012	 en.sdjournal.org

As the founder of the Ecere open-source software
project, I am pleased to share with you an intro-
duction on how to build native cross-platform

applications with the Ecere SDK. At the moment of
writing, applications built with the SDK will work on
Windows and Linux. It is also possible to build the SDK
and the applications on other platforms, such as Mac
OS X and FreeBSD, but there are still some minor is-
sues to be resolved. Mobile platforms such as Android
and iPad/iPhone are also targets we hope to support
in the near future. The general idea is that you write
your application once, with no particular attention to
platforms, and then the exact same source code can be
compiled and deployed for all supported platforms.

Overview of the SDK

Licensing
First, let me re-iterate that the Ecere SDK is Free

Open Source Software, licensed under the New BSD
license. This license is very permissive, in that the only
condition to use the Ecere SDK in your applications is
to make available the copyright and list of conditions
within either the documentation (if released as binary)
or source code (if released as source code). This means
that, unlike software licensed under the GPL for exam-
ple, it can be used by applications which are not them-
selves open source. Moreover, all third-party depen-
dencies of the Ecere libraries are released under similar
terms, which would otherwise make this impossible.

What’s included
•	 A set of compiling tools for the eC language (see next

section about eC)

•	 An Integrated Development Environment, with
the usual features such as:
•	 A source code editor with auto-completion,

syntax highlighting
•	 Management of application and library projects
•	 A visual debugger
•	 A Rapid Application Development form de-

signer, based on properties & methods

•	 A run time library, providing a uniform API across
platforms, featuring:
•	 A GUI toolkit (with a vast collection of power-

ful controls: Buttons, Edit boxes, Drop/Combo
boxes, Menus, Tabs, Tree views/Grids/List boxes,
file dialogs, ...)

•	 A 2D graphics API (bitmaps, fonts, interna-
tional text, basic drawing)

•	 A 3D graphics API, supporting both Direct3D
and OpenGL (3DS file format support)

•	 A networking API which provide Sockets as well
as a distributed objects system for eC

•	 System functionality such as file access, multi-
threading & synchronization, handling date &
time, etc.

•	 Additional libraries and code for more features, such as:
•	 The Ecere Data Access (EDA) layer, an abstract

relational database API, providing an active re-
cord system for eC. Currently it has drivers for
a minimal Ecere RDBMS and SQLite (as well as
an encrypted version using SQLiteCipher), and
recently a basic Oracle driver was introduced

•	 An audio library (supporting DirectSound on
Windows and ALSA on Linux)

•	 WIA Scanning support on Windows
•	 SSL Sockets suport through OpenSSL
•	 A 2D tiled based game graphics engine (Tiled

map, Sprites, A*)

•	 A collection of sample applications showcasing how
to use the Ecere SDK

Cross-Platform Development
with the SDK

Cross-Platform Development with the SDK

1302/2012	 en.sdjournal.org

About eC
The Ecere SDK is implemented with and pro-

vides its API for the eC programming language.
eC is an object-oriented programming language based
on C (it’s a ‘C with classes’, like C++, C#, D, Java...). While
maintaining all of C’s syntax, features and functionality
(such as compiling to native code, high portability and
performance, access to system libraries, great level of
interoperability and compatibility with existing librar-
ies), eC provides modern features, including:

•	 Classes with inheritance and polymorphism

•	 Virtual methods at the instance level (a new class is
not required to override a method)

•	 Object properties (set/get encapsulation)

•	 Reflection (Querying methods, members, proper-
ties, classes...)

•	 Importing mechanism (no need for header files)

•	 Dynamic module importing (Loading/unloading
modules at runtime, useful for plugins)

•	 No need for prototypes (forward declaration)

In the future, we might provide APIs to develop with
the Ecere SDK using other object oriented program-
ming languages. We hope to allow interoperability be-
tween eC and those languages through an automatic
bindings generation system.

The eC compiler is currently implemented by com-
piling to C as an intermediate language. The build
system will then automatically invoke GCC to compile
those intermediate C files to object files (this process
is mostly transparent to the user when using the Ecere
IDE or Makefile generation tool).

Through its properties, which enable assignments
to dynamically reflect state changes, its simple instan-
tiation notation Class object { member = value } and its
object data types, eC provides an elegant syntax well
suited for GUI applications.

Although the object instances are in fact pointers,
they are not presented to the programmer as such, and
so the confusion added by the extra reference level,
the pointer notation (Class *) and the -> used in C++ are
avoided, keeping the simpler member access notation:
object.member = value.

For the sake of example, here is an entire message
box application written in eC with the Ecere toolkit:

import “ecere”

MessageBox msgBox { caption = “Title”,
contents = “hello, world!!” };

Obtaining and installing the SDK

The home of the Ecere SDK on the web is at
http://ecere.com .

There you will find both binary and source distribu-
tions of the SDK, as well as links to our support forums,
bug trackers, and other useful resources. On the front
page, you will find platform icons which will bring you
to the corresponding sections of our Download page.

Windows
If you click the Windows icon, you will find our bi-

nary installer for the latest release, as well as instruc-
tions regarding MinGW, should you chose to use your
own installation of MinGW (A minimal system to run
the GNU GCC compiler on Windows). If you use the full
installer, the process should be quite straightforward,
and you’ll be able to simply click the Ecere IDE icon for
a fully configured IDE to come up. If you use your own
installation of MinGW, you’ll have to make sure that it
is properly installed and that the path to gcc.exe and
mingw32-make.exe are in your PATH environment vari-
able, or you can alternatively configure the paths in the
File → Global Settings dialog of the IDE, under Compil-
ers → Directories →Executables.

Figure 2: Ecere Fractals Explorer

Figure 1: Acovel Media Player

CROSS PLATFORM DEVELOPMENT

14 02/2012	 en.sdjournal.org

Linux
If you click the GNU / Linux icon, you will find instruc-

tions on how to obtain Ecere for Ubuntu from the Ecere
PPA archives, as well as down-loadable Debian packag-
es. You will find there a list of package dependencies, as
well as notes regarding problems you might encounter
where text does not show up (either a missing font or
outdated graphics driver issue). There are also links to
ArchLinux packages, and other distributions, for which
you will have to build the SDK from source.

The Mac icon will, sadly, bring you to notes on the cur-
rently experimental status of the SDK on the Mac, which
at this point can only run through the X11 server and suf-
fers some usability issues. We hope to change this soon.

Git
The Git icon will bring you to our home on GitHub,

where we host code with the Git version control system.
GitHub has a great front end to Git, and is a great place to
collaborate. If you want to keep up with the code chang-
es to Ecere or contribute, this is where it all happens. You
can use Git to clone the sdk source code from here and
simply issue a pull to download the latest incremental
changes. The command to clone the SDK into a folder
within the current working directory ‘sdk’ would be:
git clone git://github.com/ecere/sdk.git. On Win-
dows the msys-git implementation of git works great.
You will find a link to the latest version from the Source
section on our wiki’s download section.

Source
Finally, if you don’t feel like setting up a git clone, a

big shiny Download button will download the very lat-
est code as single tarball. Regardless of your platform,
after you’ve cloned or extracted the source code you
should be able to go to the sdk’s top level directory
and simply issue a ‘make’ command (mingw32-make
on Windows). Hopefully everything will go well and
you will see ‘The Ecere SDK has been built successfully’,
at which point you can proceed to issue a ‘sudo make
install’ on Linux, or a ‘mingw32-make install’ on Win-
dows. For make install to work on Windows Vista/7, you
will need an Elevated Command Prompt. You can be
start one by clicking on the Start button, typing cmd,
right clicking the cmd.exe icon selecting Run as ad-
ministrator, and selecting ‘Yes’ in the UAC prompt. If
you have any issue with the build or installation, you’re
welcome to ask for help in the forums.

Setting up a new project with the IDE
Let’s start! First, launch the Ecere IDE. To be able to

build any application, we will require a project. Let’s cre-
ate a new project: using the menu bar’s Project → New.
We need to provide a location for our project, and a proj-
ect name. Use a new folder for it, making sure you have
the right permissions in the parent folder to create it. For
the folder location, if you are on Windows, use a path

containing only ASCII characters (MinGW-make does not
seem to support Unicode paths properly). Always Stick to
ASCII characters for the project name. We’ll be making a
TicTacToe game, so let’s name our project TicTacToe.
The IDE will create the folder if it does not exist.

Leave the ‘Create Form’ check box ticked, as we will
be making a GUI application (As opposed to a con-
sole based application, such as the typical hello,
world!!). The target type specifies whether we want
to build an executable application or a library to be
used as a component part of another application. In
our case we want to build an executable. After pressing
OK, our project will be ready to use.

You should now be seeing a blank form, with a default
file name of “form1.ec”. We would like to use a different
file name, so we will change that. Press F8 (twice if the
form was not active) to toggle back to the Code Editor
(as opposed to the Form Designer). You should now be
looking at the code for form1.ec. Select All (Ctrl-A), cut
it into your clipboard (Ctrl-X), close it (Ctrl-F4 – twice to
close the form designer as well, No for not saving), go to
the project view (Alt-0), hit ‘Delete’ on form1.ec to take it
out of the project. Now we’ll add a file named TicTacToe.
ec instead. Move up to the project node (TicTacToe.epj),
and either right click on it and select Add Files to Proj-
ect, or simply press enter while it is selected. Then type
in the name of the file to add, TicTacToe.ec (it does not
need to exist prior to adding it). Notice how the new file
is added under the target node. Now double click on it
and add back the initial form code from your clipboard:

import “ecere”

class Form1 : Window
{
caption = “Form1”;
background = formColor;
borderStyle = sizable;
hasMaximize = true;
hasMinimize = true;
hasClose = true;
size = { 576, 432 };
}

Form1 form1 {};

Figure3 : New Project

Cross-Platform Development with the SDK

1502/2012	 en.sdjournal.org

Now, try building the application. Select from the
menu bar Project → Build (shortcut key – F7). If every-
thing is configured correctly, you should get the follow-
ing output in the build output tab:

Default Compiler
TicTacToe-Debug.Makefile - Project has been
modified. Updating makefile for Debug config...
Building project TicTacToe using the Debug
configuration...
Generating symbols...
TicTacToe.ec
Compiling...
TicTacToe.ec
TicTacToe.c
Writing symbol loader...
TicTacToe.main.ec
TicTacToe.main.ec
TicTacToe.main.c
Linking...

TicTacToe (Debug) - no error, no warning

If you are not getting this, but errors instead, the Ecere
SDK might not be installed properly. Please refer to the
installation notes again. If you are getting syntax errors,
you might not have pasted the code properly. Here is
the unfortunate result of missing the last semicolon:

Compiling...
TicTacToe.ec
TicTacToe.ec:15:1: error: syntax error

TicTacToe (Debug) - 1 error, no warning

Double clicking or hitting enter on the error line
in the build output view will bring you directly to the
offending line of code. If everything went right, you
should now have built your first eC program. You can
now try running with F5 (Debug → Start). You should
see your blank form coming up; it can be closed either
with the Close button or the Alt-F4 keyboard shortcut.

Quick Introduction to eC and the
GUI system

Now let’s tweak it a bit. We’ll change the name of the
class from Form1 to TicTacToe, and its instantiation at
the bottom. We will name the class instance mainForm
instead of form1. We will also change the caption of the
window from “Form1” to “TicTacToe”. All of the changes
within the class (i.e. all changes except for those to the
instantiation at the end) can be performed through the
property sheet on the left side of the form designer (F4
to toggle between properties and methods). The code
should now look like this:

import “ecere

class TicTacToe : Window
{
caption = “TicTacToe”;
background = formColor;
borderStyle = sizable;
hasMaximize = true;
hasMinimize = true;
hasClose = true;
size = { 576, 432 };
}
TicTacToe mainForm {};

Figure 4: ide2

Try to run the new code; notice your changes. Now
let’s try adding a button that will perform an action.
Use F8 to switch back to the Form Designer, click the
“Button” icon in the Toolbox at your right, and drag it
(while holding left mouse button down) onto the form.
You can try moving the button around on the form by
click-and-dragging it. Double-clicking the button will
automatically override the NotifyClicked event for the
button, which is invoked whenever the user clicks the
button. The code will now look like this:

import “ecere”
class TicTacToe : Window
{
caption = “TicTacToe”;
background = formColor;
borderStyle = sizable;
hasMaximize = true;
hasMinimize = true;
hasClose = true;
clientSize = { 576, 392 };
Button button1
{
this, caption = “TicTacToe”,
position = { 8, 8 };

bool NotifyClicked(Button button,
int x, int y, Modifiers mods)
{
return true;
}
};
}
TicTacToe mainForm {};

The Button class, like all visible GUI components in
the Ecere GUI, inherits from the base Window class. Our
TicTacToe class also inherits from Window, as the class
TicTacToe : Window stipulates, a syntax which will be
familiar to programmers of most other ‘C with classes’
languages.

The this identifier, which you see within the instan-
tiation of the Button object, refers to the current class
(TicTacToe). It is being assigned to the ‘parent’ property
of the Button class, parent being the first initializable
member of all classes deriving from Window. As anoth-
er example, x and y are the first (and only) initializable

CROSS PLATFORM DEVELOPMENT

16 02/2012	 en.sdjournal.org

members of the Point class expected for the position
property where the code says: position = { 8, 8
}. Thus, the parent could alternatively be assigned as:
parent = this.

The parent of a window in the Ecere GUI is the win-
dow within which it is confined. The parent of top level
windows is the desktop, which is the default if no par-
ent is specified (or if a value of null is specified).

Note that the property assignments directly within
the class (e.g. caption, background, borderStyle, hasMax-
imize...) are default property values for the TicTacToe
class (all instances of it), whereas the property assign-
ments within the instantiation of the button1 object are
values assigned specifically to that particular instance
of the Button class. Default values for a class can be over-
ridden at the instance level, for example here we could
override these values when instantiating mainForm.

Now within this NotifyClicked event, we will bring up
a message box that says Tic Tac Toe!. To do so, we need
to instantiate an object of the MessageBox class. Be-
cause the message box is temporary, it does not need
to be named, so we’ll use an anonymous instance. The
syntax is very similar to the instantiation of our named
TicTacToe class (the mainForm instance), without the
name:

bool NotifyClicked(Button button,
int x, int y, Modifiers mods)
{
MessageBox { master = this,
caption = “TicTacToe”,
contents = “Tic Tac Toe!” }.Modal();
return true;
}

In eC, the curly braces are the instantiation opera-
tors, inspired from the declaration list initializers of C,
taking out the assignment operator (Vector3D vec =
{ 3, 4, 5 }; becomes Vector3D vec { 3, 4, 5 }).
The use of curly braces for objects will also be familiar
to those accustomed to the Java Script Object Notation
(JSON). Whereas an anonymous instantiation is consid-
ered a statement, a named instantiation is considered a
declaration. This is important to note, since eC requires
all declarations to be grouped at the beginning of a
compound block: no declaration can follow a state-
ment within the same compound block. This follows
the C89 convention. A syntax error will result if a decla-
ration comes after a statement.

As in our early example, we will set properties for the
message box: the caption (what shows up in the title
bar), and the contents (the actual text that goes within
the box). Both properties (that can perform actions)
and data members (regular C structures data mem-
bers) can be assigned within the curly braces. We will
keep the default type, which is a message box with only
an OK button.

To establish the relationship between the message
box and our main form, we will set its master property
to be the current instance of the TicTacToe class. This
will state that the message box is owned by the main
form. If no master is specified for a window, the default
is that window’s parent. The master for a control also
determines who will receive the notification events.
For example, in the case of our button, the TicTacToe
class (the parent of the button, also the master since
no master is specified) receives notification events for
the window, so the TicTacToe class can be referred to as
this within the NotifyClicked event. Setting the master
of the MessageBox to be the main form will enable the
message box to be modal in respect to the main form,
as explained below.

In addition to instantiating the GUI object itself,
whose purpose is to hold the associated data, the Mes-
sageBox (like any Window) must be explicitly created,
unless it is auto-created by virtue of being a global in-
stance or a member instance of another Window being
created (such as the case of our mainForm instance of
the TicTacToe class). This is normally done through the
Window::Create() method, though here we will use the
Window::Modal() method, which has the triple purpose
of making the dialog modal (through the isModal prop-
erty, no other related window will accept input until
the message box is closed), creating the window and
waiting for the window to be closed before returning
from the method call. Run the program again it to see
it in action.

For a more in depth coverage of the features of the
eC programming language, please consult the Ecere
Tao of Programming, a Programmer’s Guide for the
Ecere SDK (a work in progress). You will find the Tao in-
stalled along with the SDK (In Program Files/Ecere SDK/
doc on Windows, /usr/share/doc/ on Linux), or online at
http://ecere.com/tao.pdf. The first section of the Tao
covers the C foundations of eC, whereas the second
section goes over the object oriented concepts of eC.

For the rest of this article, we will focus on the func-
tionality allowing us to build a TicTacToe game with the
SDK (which, of course, can be compiled and deployed
on any supported platform).

Drawing graphics with
The application model of Ecere is built around the

classic game development main loop concept:

While the application is running:
•	 Wait for input
•	 Process input
•	 Render current state

As such, the GUI system expects drawing to oc-
cur solely as part of this last rendering step. Any GUI

Cross-Platform Development with the SDK

1702/2012	 en.sdjournal.org

component must therefore keep track of its current
state, and any visual change is initiated by a two steps
process:

1.	Modify the state: usually done by modifying mem-
ber variables of the GUI (Window) object

2.	Request an update: a passive request to the GUI sys-
tem to be updated on the Rendering phase of the
next cycle. This is done by the Window::Update()
method, with an optional parameter specifying the
area to be updated (or null for the entire Window to
be updated).

The drawing itself is handled in the Window::OnRedraw
virtual method, called back by the GUI system during
the rendering phase. The OnRedraw method receives
a Surface in which to render the current state of the ob-
ject. The Surface class provides the methods for render-
ing bitmaps, text (with support for various fonts and
international text using UTF-8), as well as basic opera-
tions such as line drawing and area filling.

The following OnRedraw sample renders a simple
blue, horizontal, 360 pixels wide by 10 pixels high, filled
rectangle, at position (x = 20, y = 135) from the top-left
corner of the window’s client area (the portion of the
window excluding its decorations such as the title bar,
resizing bars, scroll bars):

void OnRedraw(Surface surface)
{
surface.background = blue;
surface.Area(20, 135, 379, 144);
}

Note that the background property affects the color
of calls to Area(), whereas foreground affects the color
of lines drawn with calls such as Rectangle(), DrawLine(),
HLine(), VLine(), as well as the color of text rendered
with methods such as WriteText().

Now let’s try to display a TicTacToe grid. First, we
will tweak our TicTacToe form class definition to have
a square shape, by settings the clientSize property to

400x400. We will also get rid of the resizable border,
minimize and mazimize button, keeping only the close
button (which automatically gives the window a fixed
border on which to place the button, if no border style
is specified). We will change the color of the form to
pure white as well:

background = white;
hasClose = true;
clientSize = { 400, 400 };

When drawing the grid, we will base its dimensions
on the window size, to make it easily adjustable by sim-
ply modifying the clientSize property of the class.

We will define some constants as well, at the top of
the file, using eC’s define mechanism:

define spacing = 20;
define lineWidth = 10;

As the first step of drawing our grid, we will com-
pute how much space each of the 3 sections of the grid
should take, evenly dividing by 3 the available space (af-
ter taking out the spacing at both ends), we will name
these variables sw and sh for section width and height:

int sw = (clientSize.w - 2*spacing) / 3;
int sh = (clientSize.h - 2*spacing) / 3;

Our grid is then rendered with the following 4 calls
to Area(): (Listing 1).

Try to put this together to see the grid (you can re-
fer to the full listing of the TicTacToe game at the end
of this article in case you get confused how things fit
together).

Our next step is to keep track of the state of the
game. For this purpose, we will use an enumeration
type along with a 3x3 array:

enum TTTSquare { _ , X, O };
TTTSquare board[3][3];

As a global object, the board will automatically be
initialized with ‘0’ values by default, which will match
to the ‘_’ (empty) value of our TTSquare enumeration

Listing 1

// Vertical lines

surface.Area(spacing + sw - lineWidth / 2, spacing,

spacing + sw + lineWidth / 2-1, clientSize.h - spacing - 1);

surface.Area(spacing + sw*2 - lineWidth / 2, spacing,

spacing + sw*2 + lineWidth / 2-1, clientSize.h - spacing - 1);

// Horizontal lines

surface.Area(spacing, spacing + sh - lineWidth / 2,

clientSize.w - spacing – 1, spacing + sh + lineWidth / 2-1);

surface.Area(spacing, spacing + sh*2 - lineWidth / 2,

clientSize.w - spacing – 1, spacing + sh*2 + lineWidth / 2-1);

CROSS PLATFORM DEVELOPMENT

18 02/2012	 en.sdjournal.org

type. For the purpose of our initial testing however, we
will initialize it to some arbitrary state so we can make
sure drawing X’s and O’s works:

TTTSquare board[3][3] =
{
{ _ , X, O }
{ O, _ , _ },
{ _ , _ , X }
};

Now let’s write code to render the X’s and O’s. For
the sake of simplicity, we will use text and fonts (we
could have chosen to use bitmaps instead and use the
Surface::Blit() method to display them). First, we will
create a FontResource object to automatically load
and unload our font when required. The Ecere graph-
ics system supports dynamic display mode change,
e.g. switching from Direct3D to OpenGL, or changing
color depth while the application is running. This can
be handled through Window’s OnLoadGraphics / OnUn-
loadGraphics callback virtual methods, but the FontRe-
source and BitmapResource classes provide automatic
management of Fonts and Bitmaps:

FontResource tttFont { “Comic Sans MS”,
50, bold = true, window = this };

Here we have selected “Comic Sans MS” for the fa-
ceName (the first property) of our font, a size of 50 font
points and a bold weight.

By setting the window property of the FontResource
to our TicTacToe instance, the font will automatically get
loaded and unloaded for use within the display system
of our window. By default, all windows of an applica-
tion share the same display system, but with Ecere it is
possible for one window to work with OpenGL while
another runs in GDI or X11 mode, in which case mul-
tiple display systems are in use (and multiple fonts/
bitmaps objects must be loaded). The BitmapResource
class works in a very similar way to the FontResource (in
fact they both inherit from a common Resource class).

The FontResource is purely a resource management
object. The actual Font object to be used for rendering
can be accessed through its font property, which can
be set on a Surface as such:

surface.font = tttFont.font;

In order to center the X’s and O’s within the squares
of the grid, it will be necessary to obtain the dimensions
of each letter. To do so we will use the Surface::TextExtent
method, after having selected our font:

int Xw, Xh, Ow, Oh;
surface.TextExtent(“X”, 1, &Xw, &Xh);
surface.TextExtent(“O”, 1, &Ow, &Oh);

The first parameter of TextExtent is the string to dis-
play, the second the length (only 1 character), followed
by the addresses of 2 integer variables to retrieve both
the width and height of the string.

We will then use Surface::WriteText to display the
letters at the appropriate location, using the section
width and height variables from earlier again (sw and
sh) in our computations. The proper entry in our two-
dimensional board table is examined to see whether
nothing, a X, or a O is to be rendered. X’s are displayed
in green, whereas O’s are displayed in red.

int x, y;
for(y = 0; y < 3; y++)
{
for(x = 0; x < 3; x++)
{
TTTSquare p = board[y][x];
if(p == X)
{
surface.foreground = green;
surface.WriteText(spacing + sw
* x + sw / 2 – Xw/2,
spacing + sh * y + sh / 2 - Xh/2, “X”, 1);
}
else if(p == O)
{
surface.foreground = red;
surface.WriteText(spacing + sw
* x + sw / 2 – Ow/2,
spacing + sh * y + sh / 2 - Oh/2, “O”, 1);
}}
}

We have organized the whole task of rendering the X’s
and O’s within the DrawPieces method of the TicTacToe
class, which will be invoked from the OnRedraw method.

Processing Input
The Ecere GUI provides method callbacks to handle

mouse and keyboard input within a Window. Keyboard
events are received by the OnKeyDown, OnKeyUp and On-
KeyHit methods. OnKeyHit is normally used for handling
characters, which can be repeated while the key is held
down. The input methods will relay the character infor-
mation provided by input methods (IMEs), which can be
composed by multiple key presses releases. OnKeyUp/On-
KeyDown is normally used to perform action associated
with a specific key. It is also possible to query the state of
keys, which is most useful in the context of a video game.

For handling mouse input, nine callback virtual
methods of the Window class can be overridden, three
buttons times three types of events:

On[Left/Middle/Right][ButtonDown/
ButtonUp/DoubleClick].

Mouse wheel support is handled as special key val-
ues within the OnKeyUp or OnKeyHit method: wheelUp
and wheelDown.

For our small TicTacToe game, we will simply process
OnLeftButtonDown:

bool OnLeftButtonDown(int mx,
int my, Modifiers mods)
{
return true;
}

Cross-Platform Development with the SDK

1902/2012	 en.sdjournal.org

Here we have modified the default parameters names
from x and y to mx and my, because we wish to reserve
x and y for the indices within our board table. The first
thing we will check when the mouse button is pressed
is whether we are within the TicTacToe grid, which is de-
fined by the spacing and clientSize of our class:

if(mx >= spacing && mx <
clientSize.w - spacing &&
my >= spacing && my < clientSize.h – spacing)

If we know we are within the grid, we will then sub-
tract the top-left spacing from mx and my, in preparation
to convert the pixel mouse coordinates into coordinates
within our grid, with a simple division by sw and sh:

mx -= spacing;
my -= spacing;
x = mx / sw;
y = my / sh;

One last check we’ll add is to
make sure we are not clicking
on the grid lines themselves, as
it would not be clear on which
square we wish to position our
pieces: (Listing 2).

Then we are ready to place
the X piece, if the square clicked
by the user is empty, and re-
quest an update of our window:

if(!board[y][x]) { board[y]
[x] = X; Update(null); }

Game Logic
A 2-players game is much

more fun when there are 2 play-
ers. The eC distributed objects
framework makes it extreme-
ly easy to write multi-player
games without the tediousness
of implementing a network pro-
tocol. Instead, a server connec-
tion class is defined and meth-
ods can be called across the
network, as if the object was
local. Many such samples can
be found within the samples/
directory of the SDK. For the
purpose of this article however,
we will focus instead on imple-
menting an AI player. The hu-
man player will play X, while the
computer plays O.

First, we will define a turn variable which specifies
whose turn it is. A value of 0 will mean the game is over.
We will initialize it to X: the player will start.

TTTSquare turn; turn = X;

Then to make sure the player can’t continue playing
after a TicTacToe, we will check whether it is indeed his
turn to play (turn == X) within OnLeftButtonDown.

We will also turn our useless “TicTacToe” button into
a “Reset” button that restarts the game, setting turn to
X and clearing the board with 0s: (Listing 3).

We will integrate the game logic within a Move-
Played() method which will get called right after the
user places a piece on the board, in the OnLeftButton-
Down method: (Listing 4).

Listing 3
Button btnReset
{
this, font = { “Arial”, 12 }, caption = “Reset”, position = { 8, 8 };

bool NotifyClicked(Button button, int x, int y, Modifiers mods)
{
memset(board, 0, sizeof(board));
turn = X;
Update(null);
return true;
}
};

Now we need code to detect a Tic Tac Toe!
TTTSquare FindTicTacToe(TTTSquare state[3][3])
{
int i;

// Diagonal ‘\’
if(state[0][0] && state[0][0] == state[1][1] && state[1][1] == state[2][2])
return state[0][0];
// Diagonal ‘/’
if(state[2][0] && state[2][0] == state[1][1] && state[1][1] == state[0][2])
return state[2][0];

for(i = 0; i < 3; i++)
{
// Horizontal
if(state[i][0] && state[i][0] == state[i]
[1] && state[i][1] == state[i][2])
return state[i][0];
// Vertical
if(state[0][i] && state[0][i] == state[1][i] && state[1][i] == state[2][i])
return state[0][i];
}
return 0;
}

Listing 2
if((mx < sw - lineWidth / 2 || mx > sw + lineWidth / 2) && // 1st vertical line
(mx < sw*2 - lineWidth / 2 || mx > sw*2 + lineWidth / 2) && // 2nd vertical line
(my < sh - lineWidth / 2 || my > sh + lineWidth / 2) && // 1st horizontal line
(my < sh*2 - lineWidth / 2 || my > sh*2 + lineWidth / 2)) // 2nd horizontal line

CROSS PLATFORM DEVELOPMENT

20 02/2012	 en.sdjournal.org

We check for a tic tac toe, if we
found one, the game is over: we dis-
play the winner in a message box. If
X just played, it is now the computer’s
turn to play. We call the BestMove()
method where we will implement the
computer’s AI. If there was a move
available, it gets played and Move-
Played() is invoked again to verify
whether there is now a Tic Tac Toe. If
the computer (O) just played, it is now
the player’s turn (X).

The AI
Implementing game AIs is always a

fun endeavor! Classic 3x3 Tic Tac Toe
is a rather simple game, and there
are many approaches one could take
to implement an AI, including hard-
coding and/or categorizing solutions.
However we will chose to implement
a basic minimax algorithm, which can
scale to more complex variants of
the game, and can be used for other
games as well (Figure5).

The Ecere Chess application (whose
source code is available on our GitHub
page) also implements a minimax
type algorithm. An overview of the
minimax algorithm can be found at
http://en.wikipedia.org/wiki/Minimax.

Here we will only provide a quick
summary of the AI implementation.
The AI included in the full listing at the
end of this article includes additional
code to add randomness and cause it
to make human-like errors, based on a
‘mastery’ level, ranging from 0 (dumb)
to 100 (you can only tie). For the sake
of understanding minimax, the sim-
pler algorithm (which does not make
mistakes) follows: (Listing 5).

The code uses recursion to evalu-
ate all possible moves, alternating be-
tween each player. It uses a floating
point rating system, where the rating
is negated at every player switch to
make it relative to the current player. A
TicTacToe at the current level is given
a value of 1, while a TicTacToe further
away is made less significant by a di-
vide by 2. The best move is returned in
the bestMove parameter. No available
move is given a special value of -100.

Full Tic Tac Toe Listing
The full listing of TicTacToe.ec follows. With the Ecere SDK, it can

be compiled and executed on any platform. A static binary on Windows
(.exe) including the Ecere runtime library (with no external dependen-
cies), takes up 657 KB once compressed with UPX (Figure 6) (Listing 6).

Listing 4
void MovePlayed()
{
TTTSquare result = FindTicTacToe(board);
if(result)
{
MessageBox { caption = “Tic Tac Toe!”,
contents = (result == X ? “You win!” : “Computer wins!”) }.Modal();
turn = 0;
}
else if(turn == X)
{
// Computer plays
Point move { };
turn = O;
if(BestMove(turn, board, move) != noAvailableMove)
{
board[move.y][move.x] = O;
MovePlayed();
}
else
turn = 0;
}
else
turn = X;
}

Listing 5
define noAvailableMove = -100;

float BestMove(TTTSquare t, TTTSquare state[3][3], Point bestMove)
{
int x, y;
float bestRating = noAvailableMove;
for(y = 0; y < 3; y++)
{
for(x = 0; x < 3; x++)
{
if(!state[y][x])
{
float newRating;
state[y][x] = t;
if(FindTicTacToe(state))
newRating = 1;
else
{
Point move;
newRating = BestMove((t == X) ? O : X, state, move);
if(newRating == noAvailableMove)
newRating = 0;
newRating = -newRating/2;
}
state[y][x] = 0;
if(newRating > bestRating)
{
bestRating = newRating;
bestMove = { x, y };
} } }
}
return bestRating; }

Cross-Platform Development with the SDK

2102/2012	 en.sdjournal.org

Figure 5: EcereChess Figure 6: TicTacToe

Listing 6

import „ecere”

define spacing = 20;
define lineWidth = 10;
define mastery = 97;

define noAvailableMove = -100;

enum TTTSquare { _ , X, O };

TTTSquare board[3][3];

class TicTacToe : Window
{

caption = „TicTacToe”;

background = white;

hasClose = true;
clientSize = { 400, 400 };

FontResource tttFont { „Comic Sans MS”, 50, bold = true, window = this };

TTTSquare turn; turn = X;

TicTacToe()

{

RandomSeed((uint)(GetTime() * 1000));
}

TTTSquare FindTicTacToe(TTTSquare state[3][3])

{

int i;

// Diagonal ‚\’

if(state[0][0] && state[0][0] == state[1][1] && state[1][1] == state[2][2])
return state[0][0];

CROSS PLATFORM DEVELOPMENT

22 02/2012	 en.sdjournal.org

// Diagonal ‚/’

if(state[2][0] && state[2][0] == state[1][1] && state[1][1] == state[0][2])
return state[2][0];

for(i = 0; i < 3; i++)
{

// Horizontal

if(state[i][0] && state[i][0] == state[i][1] && state[i][1] == state[i][2])
return state[i][0];
// Vertical

if(state[0][i] && state[0][i] == state[1][i] && state[1][i] == state[2][i])
return state[0][i];
}

return 0;
}

float BestMove(TTTSquare t, TTTSquare state[3][3], Point bestMove)
{

static int level = 0;
int x, y;
float bestRating = noAvailableMove;
int filled = 0;
bool couldTicTacToe = false;
/* A player is likely to see the opponent’s tic tac toe in his own tic tac toe spot */
Point badMove;

Point moves[9];

int numMoves = 0;

level++;

for(y = 0; y < 3; y++)
for(x = 0; x < 3; x++)
if(state[y][x]) filled++;

for(y = 0; y < 3; y++)
{

for(x = 0; x < 3; x++)
{

if(!state[y][x])
{

float newRating;
state[y][x] = t;

if(FindTicTacToe(state))
newRating = 1;

else
{

Point move;

newRating = BestMove((t == X) ? O : X, state, move);

if(newRating == noAvailableMove)
newRating = 0;

newRating = -newRating/2;

if(newRating <= -0.25f)
{

badMove = move;

couldTicTacToe = true;
}

}

state[y][x] = 0;

Cross-Platform Development with the SDK

2302/2012	 en.sdjournal.org

if(newRating > bestRating)
{

bestRating = newRating;

bestMove = { x, y };

numMoves = 1;

moves[0] = bestMove;

}

else if(level == 1 && newRating == bestRating)
moves[numMoves++] = { x, y };

}

}

}

if(GetRandom(0, 60) > mastery || (filled > 4 && filled < 7 && couldTicTacToe &&
(bestMove.x != badMove.x || bestMove.y != badMove.y)))

{

if(level == 2 && GetRandom(0, 25) > mastery)
bestRating = -0.5f;

if(level == 4 && GetRandom(0, 100) > mastery)
bestRating = -0.125f;

}

if(level == 1 && numMoves > 1)
bestMove = moves[GetRandom(0, numMoves-1)];

level--;

return bestRating;
}

void MovePlayed()
{

TTTSquare result = FindTicTacToe(board);

if(result)
{

MessageBox { caption = „Tic Tac Toe!”,

contents = (result == X ? „You win!” : „Computer wins!”) }.Modal();

turn = 0;

}

else if(turn == X)
{

// Computer plays

Point move { };

turn = O;

if(BestMove(turn, board, move) != noAvailableMove)
{

board[move.y][move.x] = O;

MovePlayed();

}

else
turn = 0;

}

else
turn = X;

}

void DrawPieces(Surface surface)
{

int sw = (clientSize.w - 2*spacing) / 3;
int sh = (clientSize.h - 2*spacing) / 3;

CROSS PLATFORM DEVELOPMENT

24 02/2012	 en.sdjournal.org

int x, y;
int Xw, Xh, Ow, Oh;

surface.font = tttFont.font;

surface.TextExtent(„X”, 1, &Xw, &Xh);

surface.TextExtent(„O”, 1, &Ow, &Oh);

for(y = 0; y < 3; y++)
{

for(x = 0; x < 3; x++)
{

TTTSquare p = board[y][x];

if(p == X)
{

surface.foreground = green;

surface.WriteText(spacing + sw * x + sw / 2 – Xw/2,

spacing + sh * y + sh / 2 - Xh/2, „X”, 1);

}

else if(p == O)
{

surface.foreground = red;

surface.WriteText(spacing + sw * x + sw / 2 – Ow/2,

spacing + sh * y + sh / 2 - Oh/2, „O”, 1);

}

}

}

}

void OnRedraw(Surface surface)
{

int sw = (clientSize.w - 2*spacing) / 3;
int sh = (clientSize.h - 2*spacing) / 3;

surface.background = blue;

// Vertical lines

surface.Area(spacing + sw - lineWidth / 2, spacing,

spacing + sw + lineWidth / 2-1, clientSize.h - spacing - 1);

surface.Area(spacing + sw*2 - lineWidth / 2, spacing,

spacing + sw*2 + lineWidth / 2-1, clientSize.h - spacing - 1);

// Horizontal lines

surface.Area(spacing, spacing + sh - lineWidth / 2,

clientSize.w - spacing - 1, spacing + sh + lineWidth / 2-1);

surface.Area(spacing, spacing + sh*2 - lineWidth / 2,

clientSize.w - spacing - 1, spacing + sh*2 + lineWidth / 2-1);

DrawPieces(surface);

}

bool OnLeftButtonDown(int mx, int my, Modifiers mods)
{

if(turn == X && mx >= spacing && mx < clientSize.w - spacing
&& my >= spacing && my < clientSize.h - spacing)

{

int sw = (clientSize.w - 2*spacing) / 3;
int sh = (clientSize.h - 2*spacing) / 3;
mx -= spacing;

Cross-Platform Development with the SDK

2502/2012	 en.sdjournal.org

my -= spacing;

/* 1st vertical line */

if((mx < sw - lineWidth / 2 || mx > sw + lineWidth / 2) &&
/* 2nd vertical line */

(mx < sw*2 - lineWidth / 2 || mx > sw*2 + lineWidth / 2) &&

/* 1st horizontal line */

(my < sh - lineWidth / 2 || my > sh + lineWidth / 2) &&

/* 2nd horizontal line */

(my < sh*2 - lineWidth / 2 || my > sh*2 + lineWidth / 2))

{

int x = mx / sw;
int y = my / sh;
if(!board[y][x])
{

board[y][x] = X;

Update(null);
MovePlayed();

}

}

}

return true;
}

Button btnReset

{

this, font = { „Arial”, 12 }, caption = „Reset”, position = { 8, 8 };

bool NotifyClicked(Button button, int x, int y, Modifiers mods)
{

memset(board, 0, sizeof(board));
turn = X;

Update(null);
return true;
}

};

}

TicTacToe mainForm {};

Jeromie St-Louis
Jerome is the founder and lead visionary behind the Ecere SDK. He
is also the author of the “3D Coding BlackHole”, a 3D graphics pro-
gramming tutorial series from 1996 which evolved into the SDK’s 3D
engine. Jerome started working on a cross-platform game engine as
well as a GUI toolkit for use within games in 1997 which became the
Ecere SDK. In 2004, Jerome designed eC as a language to present
the SDK in an object-oriented manner and support Rapid Application
Development in the IDE. Jerome wrote many applications with the
Ecere SDK, notably the Acovel Media Player, Ecere Communicator
and Paper2PACS. Through his company Ecere Corporation, Jerome
offers consulting services to the government, private and health care
(radiology in particular: PACS/RIS solutions) sectors. Among his clients
is Gallium Software, for whom he is a lead developer on InterMAPhics
mapping/GIS products.

CROSS PLATFORM DEVELOPMENT

26 02/2012	 en.sdjournal.org

What is PhoneGap?
PhoneGap is a collection of tools, and libraries that

allow you to build native mobile applications for mul-
tiple devices. PhoneGap supports the development of
portable application code that can run on Apple iOS
iPhones, iPads, iPods, all Android devices, Windows
Phone 7 devices, BlackBerry phones and PlayBooks, HP
WebOS phones and TouchPad, as well as Symbian and
Samsung Bada devices (Figure 1).

PhoneGap embraces web technology, so web devel-
opers can leverage their existing skills and write their
applications in HTML, CSS, and JavaScript.

How does it work?
Running an Application on a device

At runtime, PhoneGap works by instantiating a
browser component on the device. This is a chrome-less
browser, meaning that it does not have an address-bar

or forward/back buttons. The end developer’s applica-
tion consists of HTML, JavaScript and CSS that are load-
ed into the browser component. PhoneGap provides
a JavaScript API that allows developer code to access
device functionality, that is currently not accessible to
web sites loaded in the default browser.

Building for a device.
PhoneGap includes tools and libraries for packag-

ing developer code into an application that can run
on the device. The exact process of packaging will de-
pend on the device as each has its own methods of
packaging. The developer code is typically maintained
in a www folder indicating the root of the application.
All content within this root folder is considered to be
portable and will have little if any modification be-
tween device targets.

Apache Cordova :: the framework
formerly known as PhoneGap
This article uses the names PhoneGap and Cordova synonymously
to refer to the open source project currently in incubation within
the Apache Software Foundation.

Figure 1: Developers can leverage their existing skills in web technologies such as HTML, CSS and
Javascript to create cross-platform apps

Apache Cordova :: the framework formerly known as PhoneGap

2702/2012	 en.sdjournal.org

Distributing your application
PhoneGap applications are distributed through app

stores, just like any other native application. The same
rules apply for what your app is allowed to do, and
what kind of content is appropriate. Your PhoneGap
application will typically need to be reviewed, and
upon passing review, it will be distributed via app store
downloads.

What need does it fill?
The best explanation of how PhoneGap can help your

company is really the story of how it came to be in the
first place. When the iPhone SDK came out, the entire
team at Nitobi was excited and wanted to build apps for
this new cool platform. Nitobi at the time was primarily a
web development shop selling JavaScript components,
and providing consulting and dev services to companies
in need of performant ajaxy websites. Nitobi was not in a
position to send the entire team off to learn Objective-C,
but some of the team while playing with the SDK discov-
ered that they could present pretty compelling markup
in the browser component. With a little more work, they
were allowing the hosted JavaScript code to call native
code and access device functionality.

Next came Android, similarly appealing, so instead
of sending everyone to learn Java and the Android
SDK, a single developer was tasked with providing the
same features via a hosted WebBrowser control and
almost instantly Nitobi had created a cross platform
framework allowing for applications running in a host-
ed WebBrowser on multiple mobile devices.

… and so on, …

Nitobi, as a company, has always embraced open
source, so naturally, PhoneGap has always been open
source. This is without question why the project is so
successful today. Early in the project, most of the con-
tributions were coming from Nitobi developers, but a
community was also uniting around the openness of
the project. Early in 2011 the community caught up
to Nitobi in number of commits, most certainly due in
part to IBM putting 4 full-time developers on the proj-
ect (Figure 2).

Nitobi additionally had to earn revenue, so devel-
oper work time was focused on client development
projects and consulting. We identified client needs that
were filled by PhoneGap, and strove to use it wherever
possible. We also identified opportunities to commit
code back to the PhoneGap project and made deals
with clients at a discount if they were willing.

As new Adobe employees we are now even more
committed to contributing to the project as we no lon-
ger have to split our time with client projects, and can
focus on the framework itself.

Standards
Implementing consistent functionality across different

devices exposed the need to follow standards. While inves-
tigating interfaces for addition into PhoneGap, the team
has kept a close eye on standards bodies like the W3C. Sev-
eral PhoneGap contributors have even joined standards
groups to help define the next wave of device APIs.

The Geolocation API was implemented in PhoneGap
before it made its way to iOS (then iPhone OS). Follow-
ing standards meant that in many cases the browser
maker actually implements the same API as PhoneGap
and PhoneGap can simply defer to the browser imple-
mentation when running on these devices.

How PhoneGap can help ease you into
the world of mobile development

Software development is not easy, and good mobile
software development is downright hard. Factors like lim-
ited processor power, screen size, and battery consump-
tion all play a role in challenging the developer to deliver
a compelling experience. A common consideration when
choosing a device to target is the skill-set that is required
to develop for the device. Each device manufacturer/pro-
vider typically provides it’s own Software Developer Kit
(SDK) to enable developers to target the device. An SDK
will have restrictions on what languages an application can
be written in, as well as what tools you can use to develop
for it. The SDK will provide the device level functionality,
and define what functionality is available through its APIs.

While many articles focus on the development lan-
guage being the only blocker to jumping to a new plat-
form, the issue is much deeper.

Developers wishing to target a new device will have
to potentially:
•	 Learn or know the language required for the device
•	 Learn or know how to use the tools to build for the

device
•	 Learn the User Interface APIs, and how to construct

their application
•	 Learn the device APIs available, and how to use them

Figure 2: PhoneGap is an open source project with
many contributors. Source: ohloh.net

http://ohloh.net
http://ohloh.net

CROSS PLATFORM DEVELOPMENT

28 02/2012	 en.sdjournal.org

In the case of PhoneGap applications, this picture is
simplified somewhat. The only piece that changes from
one device to another is the tooling. The language used
to develop is always JavaScript, so users already familiar
with JavaScript are ready to go. The User Interface API
is again, JavaScript, with HTML + CSS to define layout,
and positioning, look and feel. Also, the device APIs
are exactly the same, so a developer moving from one
PhoneGap device to another can expect it to work in
exactly the same way, just like their portable PhoneGap
code does (Figure 3).

More than websites on the phone
A common mis-conception that newcomers to

PhoneGap have is that it is just a website. There is an
important distinction that must be made when ap-
proaching developing a JavaScript based application.

You should not expect to update your application
whenever you like, as you would with your website.
App store policies generally do not allow you to make
changes without going through the review process
again. While it is possible to serve web content over
http to your app, it is best to avoid having this be the
primary function of your app.

PhoneGap is not a web server, so you should not
expect to run php, or .net code, or have paths like ‘/’
magically resolve to ‘/index.html’. Some consider-
ation should also be made for data access methods.
PhoneGap applications can not connect to a remote
database servers directly, so you will need a web server
to manage translation of your data from your database,
and serve it over http.

A typical PhoneGap application consists of one or
more standalone web pages hosted on the device con-
necting to a RESTy API on the server, typically serving
JSON for transport efficiency.

Your application should provide some sort of offline
functionality, or it should at least be aware when it is
running offline, and inform the user of what to expect.
App stores generally will not accept an application that
shows an infinite spinner while attempting to connect
to an unreachable server. PhoneGap provides the Net-
work Connection API so your application can not only
detect when it is connected, but tell if the connection
is via wifi, or cellular data.

In the world of mobile devices, although remarkable,
processor capabilities are limited. The amount of code
that needs to load before a user interface is presented
is an important consideration.

There are potentially 3 areas where code size can im-
pact performance and applications should be optimized:

1.	Time for code to be loaded from the file system.

2.	Time for code to be interpreted by the script host.

3.	How much memory the code occupies at runtime.

Modern best practices for JavaScript suggest that
you concatenate files, and use a minification tool to
compress the amount of data delivered. While file
size will improve the load time for your app, there is
no benefit in zipping your content as is currently done
by many web servers. This is primarily because the file
itself will not be subject to network latency, so minifica-
tion should be enough for text based files.

Another area to consider is the actual screen sizes of
the devices. Using css3 media queries it is possible to tar-
get different resolutions with different runtime assets.

The following example demonstrates targeting
small screens, versus tablet size devices.

@media screen and (max-width: 599px) {
 .class {
 background:url(MySmallImage.png);
 }
 }
 @media screen and (min-width: 600px) {
 .class {
 background:url(MyTabletImage.png);
 }
 }

I’ll tell you when I’m ready
The entire PhoneGap API is asynchronous, meaning

calls to get device values do not return an immediate
result, but return the result at some later time via a
callback method. This approach is similar to an AJAX
website, where the page is refreshed without having to
reload, and the user interface can remain responsive to
the user even while data is pending.

Figure 3: The only piece that changes from one
device to another is the tooling and the language
used to develop is always JavaScript

Apache Cordova :: the framework formerly known as PhoneGap

2902/2012	 en.sdjournal.org

Application logic, sometimes referred to as Business
logic, is typically running in the webpage itself in JavaS-
cript. This may be in contrast to web developers coming
from an environment where the web server is doing all the
work, and maintaining state for multiple clients. Applica-
tion logic, including state, and view management is typi-
cally performed in JavaScript in PhoneGap applications.

HTML has many features that make it suitable for de-
fining user interface presentation, as opposed to typi-
cal document layout.

Gap Stores
The usual process for distributing PhoneGap apps is

through an App store. For most devices, this is the only way
to distribute an app. This means all the usual processes ap-
ply, from app review, to code signing. PhoneGap itself does
not provide any extra help in this area, and developers are
still at the mercy of whichever store they are pursuing.

The liberal license that PhoneGap distributed under
does not require any attribution, so there is effectively no
way to know how many PhoneGap applications there are
in the wild. Developers will typically announce their app
on the mailing list, or submit a form on phonegap.com
that allows developers to list their applications. There
are literally tens of thousands of PhoneGap applications
published throughout the various App stores (Figure 4).

Reuse of assets
Many companies come at PhoneGap looking to

establish a presence in an app store. Typically they al-
ready have a website, and sometimes even a mobile

friendly website. In these cases much of the css and im-
age resources will not change, however the approach
is typically different as these items are packaged into
the app, and not served by a web server. If the current
web site consists of server side logic, they may need
to restructure either some or all of code to work in a
disconnected state.

[insert PhoneGap-compass.odt example here]

Here is an example of the Compass application that
will run on iOS, Android, WP7, etc. You can also view a
video of this application at http://www.youtube.com/
watch?v=imFN2fqw1t0 (Listing 1).

Figure 4: There are thousands of PhoneGap apps
published throughout the various app stores

Listing 1

<!DOCTYPE html>
<html>
 <head>
 <meta name=”viewport” content=”width=device-width, initial-

scale=1.0, maximum-scale=1.0, user-scalable=no;” />
 <meta http-equiv=”Content-type” content=”text/html; charset=utf-8”/>

 <title>Cordova Compass</title>

 <style>
 body
 {
 background:#111 none repeat scroll 0 0;
 color:#ccc;
 font-family:”Segoe WP”, Verdana, Geneva, sans-serif;
 margin:12px 12px;
 border-top:1px solid #000;
 font-size:24px;
 }

 div.info
 {
 margin-left:20px;

http://www.youtube.com/watch?v=imFN2fqw1t0
http://www.youtube.com/watch?v=imFN2fqw1t0

CROSS PLATFORM DEVELOPMENT

30 02/2012	 en.sdjournal.org

 font-size: 24px;
 }

 span.btn
 {
 background: black;
 color: white;
 text-decoration: none;
 line-height:32px;
 min-height:32px;
 min-width:80px;
 font-size: 24px;
 text-decoration:none;
 text-align:center;
 padding:12px 12px;
 margin:8px 8px;
 font-family:”Segoe WP Semibold” Helvetica Arial;
 border:solid #ccc 1px;
 }
 </style>

 <script type=”text/javascript” charset=”utf-8” src=”cordova-1.6.0.js”></script>

 <script type=”text/javascript”>

 document.addEventListener(“deviceready”,onDeviceReady,false);

 var compassWatchId = null;

 // once the device ready event fires, you can safely do your thing! -jm
 function onDeviceReady()
 {
 console.log(“onDeviceReady. You should see

this message in the IDE output window.”);
 }

 function onHeadingUpdate(heading)
 {
 compassRose.style.msTransform = “rotate(-” + heading.trueHeading + “deg)”;
 compassRose.style.webkitTransform = “rotate(-” + heading.trueHeading + “deg)”;
 trueHeadingTxt.innerText = “trueHeading : “ + heading.trueHeading;
 magHeadingTxt.innerText = “magneticHeading : “ + heading.magneticHeading;
 accuracyTxt.innerText = “headingAccuracy : “ + heading.headingAccuracy;
 timestampTxt.innerText = “timestamp : “ + heading.timestamp;
 }

 function onCompassFail(err)
 {
 var msg = err == CompassError.COMPASS _ NOT _

SUPPORTED ? “Compass not supported” : “Internal Error”;
 errMsg.innerText = “Compass Error : “ + err + “ - “ + msg;
 }

 function startCompassWatch(bStart)
 {
 errMsg.innerText = “”;
 if(bStart)
 {
 if(!compassWatchId)
 {
 compassWatchId = navigator.compass.watchHe

ading(onHeadingUpdate,onCompassFail,{frequency:100});
 }
 }
 else if(compassWatchId)
 {
 navigator.compass.clearWatch(compassWatchId);

Apache Cordova :: the framework formerly known as PhoneGap

3102/2012	 en.sdjournal.org

Pitfalls
The most common complaint with PhoneGap (re-

ally about HTML5 user interfaces in general) is related
to the scrolling interaction. Everyone has come to ex-
pect iPhone’s beautiful smooth scrolling, although this
can be difficult to recreate in HTML5. There are several
libraries that do a very good job at mimicking the na-
tive interaction, but developers must still be mindful of
what they are doing to avoid choppiness or flickering
during scrolling. Libraries include iScroll4, which is a
standalone solution, and Sencha Touch which requires
developers to embrace the Sencha way more deeply.

The browser components running on mobile de-
vices are very similar. In fact, most of them are running
a variation of WebKit, the exception of course being
Windows Phone 7, which is running Internet Explorer
9. All of the browsers support W3 defined DOM Level
2 events which allows calls to addEventListener to be
implemented consistently.

PhoneGap’s device APIs
PhoneGap allows your application to access every-

thing that a normal native app would.

PhoneGap core device APIs include:

1.	Accelerometer
•	 Monitor the motion sensor on the device.

2.	Camera
•	 Take pictures with the device camera, and allow the user

to select images from their photo library on the device.

3.	Capture
•	 Capture video and still images from the camera, and

audio from the microphone.

4.	Compass
•	 Give users of your app some direction.

5.	Contacts
•	 Search and Create contacts in the user’s address

book.

6.	File
•	 Low level read and write access to the file system.
•	 Upload and download files from a web server.

7.	GeoLocation
•	 Make your app location aware.

8.	Media
•	 Play and record audio files.

9.	Network
•	 Monitor the device connections

10.	 Notification
•	 Access to vibration, beep and alerts.

11.	 Storage
•	 Persistent data store in WebStorage.

 compassWatchId = null;
 }
 }

 </script>

 </head>
 <body>

 <div>

 </div>

 <div class=”info” id=”trueHeadingTxt” style=”color:Red;”>trueHeading : </div>
 <div class=”info” id=”magHeadingTxt” style=”color:Blue;”>magneticHeading :</div>
 <div class=”info” id=”accuracyTxt” style=”color:Yellow;”>headingAccuracy :</div>
 <div class=”info” id=”timestampTxt” style=”color:Green;”>timestamp :</div>

 <div style=”margin:40px 40px;”>
 Start Watch
 Stop Watch
 </div>

 <div id=”errMsg” class=”info” style=”background-color:Red;color:#000;”>

 </div>
 </body>
</html>

CROSS PLATFORM DEVELOPMENT

32 02/2012	 en.sdjournal.org

All APIs are implemented consistently across all sup-
ported devices, so the same code will run everywhere
(Figure 5).

What doesn’t PhoneGap do?
Quite purposefully, PhoneGap does not provide any

user interface controls. PhoneGap is solely focused on be-
ing the best container, and device api host for your web
tech built application. But PhoneGap does not limit your
choice either, and it allows you to develop with whatever
UI framework you are familiar with. There are many op-
tions including jQuery Mobile, and Sencha Touch. Simi-
larly, there is a multitude of choices for providing applica-
tion structure, via best practice patterns. Frameworks like
Backbone, or Knockout fit comfortably into PhoneGap.

Plugins
In architecting PhoneGap, it became obvious that

there would always be some differences in what each
device could do. The APIs defined as the core PhoneGap
device APIs represent a very broad set of functionality
that can be consistently delivered, but there is also a
need to extend functionality for a particular device if a
feature is compelling enough. PhoneGap provides an
easy mechanism to ‘plugin’ new functionality as it is de-
veloped. At it’s heart PhoneGap is providing a bridge
from the JavaScript world to the native code world, and
back again. This bridge can also be used by developers
wishing to augment this functionality with their own
native additions.

There is currently a huge list of plugins in a separate
repository to support everything from PayPal, Face-
book, and Twitter integrations, to Scanning BarCodes
with the Camera. The beauty of plugins is that they can
be developed organically, in that if a developer has a
specific expertise on a platform they can develop a plu-
gin for it without being concerned with how to imple-
ment it elsewhere. Another developer can pick it up
and fill in the functionality for another device.

The plugin repo can be found here: https://github.
com/phonegap/phonegap-plugins

How much does it cost?
PhoneGap is and always has been free. It was li-

censed under the liberal MIT license before being con-
tributed to the Apache Software Foundation. Apache
Cordova is licensed under the Apache license.

Figure 5: PhoneGap’s core device API’s are show in the above matrix across the various platforms

Jesse MacFadyen is a senior computer scientist
at Adobe Systems. Jesse was part of the team at
Nitobi that created PhoneGap and joined
Adobe when Nitobi was acquired in October
of 2011. PhoneGap has been submitted to the
Apache Software Foundation and is now called
Apache Cordova. Jesse continues to contribute
to Apache Cordova and recently worked closely
with Microsoft to bring the full functionality of
PhoneGap to Windows Phone 7 Mango.

https://github.com/phonegap/phonegap-plugins
https://github.com/phonegap/phonegap-plugins

http://autriv.com

CROSS PLATFORM DEVELOPMENT

34 02/2012	 en.sdjournal.org

As the number of mobile platforms grows, many
companies realize that it is really expensive to
develop natively for each platform, even the ma-

jor ones. To write a native app for iOS, Android and Win-
dows Phone 7 three different programming languages
and frameworks must be learned and well known - and
this three are not the only mobile platforms that ex-
ist. In that young market not many experienced native
code developers are around, which makes the devel-
opment of mobile apps just more expensive. And for
future updates every app has to be maintained and
tested seperately.

In most companies that want to go mobile with apps
and possibly with a mobile site alot of skilled web de-
velopers are working inhouse already. They can use
HTML5 and cross-platform tools to create their applica-
tions. But action games or other performance-criticial
applications are currently no target for HTML5 cross-
platform-developing. For most other use cases HTML5
can be used with good results.

There exist alot of cross-plattform-development
tools and frameworks, I will focus on the Enyo frame-
work today, packing it as native app for iOS or Android
and deploying it as mobile webapp.

Enyo was developed by Hewlett Packard for the HP
Touchpad Tablet and is the Framework that powers
the webOS Operating System next to technologies like
node.js and WebKit. It was finally released end of Janu-
ary 2012 as Open Source (Apache License) to the public.
Enyo is able to run on desktops and on mobile and if we
wanted to target other markets like mobile appstores,
we could produce directly our (mobile-) website from it
or even desktop applications (Intel AppUp Encapsula-
tor, MacGap).

There are two versions of Enyo. Enyo 1.x, which is not
developed further and which was shipped with webOS
3 and the new Enyo 2. While Version 1 had alot of wid-
gets for building user interfaces, it depended hardly on
systems equipped with WebKit (iOS, Android, webOS).

Enyo 2 was just released together with Enyo 1 which
was closed source before. Enyo 2 will get UI-Elements
in next releases too, but at least the core framework
tries to be a real cross platform solution, even with
support for Internet Explorer. It has a more modular-
ized approach. Today with Enyo 2, you can use the core
system with every other UI-Framework (e.g. bootstrap
from Twitter) or write all the UI on your own. But ac-
cording to the release schedule, the Enyo UI-Widgets
will be released at the end of February.

That was some basic information and some history,
let us start exploring Enyo: during this article we will
create a basic cross-plattform application, package it
with Phonegap and even deploy a mobile site on her-
oku services. An Enyo app is usually developed in the
browser and after the initial developing in the browser
the app is brought to other platforms for device/plat-
form specific development, debugging and testing.

For every chapter you will find the whole code in the
zipfile linked at the end or also beginning at each chapter.

“Hello World” in Enyo
The smallest Enyo app possible would be a “hello

world”-application. In Enyo just a very small amount of
HTML has to be defined before like the doctype, body/
html tags and the references to the Enyo framework it-
self. Enyo creates almost the entire markup from JavaS-
cript and renders it into the DOM, so that will be mostly
all the HTML markup we will need: (Listing 1).

The most important part, as everything else is just ba-
sic markup and the inclusion of the framework is the cre-
ation of a Enyo control with the content “Hello World”:
new enyo.Control({content: “Hello World”}).write();

That line renders directly to a div element contain-
ing “Hello World”:

<div id=”control”>Hello World</div>

EXAMPLECODE Part 1 - Hello World

EnyoJS, Phonegap and node.js
for Cross-Platform-Development:
Developing a todo application
By Robert Kowalski

http://robert-kowalski.de/downloads/enyo_article/article_code.zip

EnyoJS, Phonegap and node.js for Cross-Platform-Development: Developing a todo application

3502/2012	 en.sdjournal.org

The todo application
Structure of an Enyo app and further setup

The basic, initial setup for us will look like this and is
available in EXAMPLECODE Part 2a - Empty Template:
(Listing 2).

As we look into our package.js from the template
provided, it just references every JavaScript and CSS file
we want to use within our Enyo app:

enyo.depends(
 “todos.css”,
 “todos.js”,
 “../fu-theme/fu.css”
);

Please download/install the app template with the

Enyo core and the small CSS theme provided, as brows-
ing the Enyo website, downloading and copying the files
into folders would be a very boring part of the article.

EXAMPLCODE Part 2a - Empty Template

Creating our first kind - a task

Enyo has the concept of „kinds“. Kinds in Enyo are
objects that are very modularized, reusable and en-
capsulated. One type of kinds are Controls. A Control is
controlling DOM-nodes and can contain other controls
which can be nested further into each other.

The Todo app we want to write has several tasks. So
we are modelling a Task-kind: (Listing 3).

Listing 1
<!doctype html>
<html>
<head>
 <title>Enyo</title>
 <!-- the enyo core framework -->
 <link href=”enyo-2.0b/enyo.css” rel=”stylesheet” type=”text/css” />
 <script src=”enyo-2.0b/enyo.js” type=”text/javascript”></script>
</head>
<body>
 <script type=”text/javascript”>
 new enyo.Control({content: “Hello World”}).write();
 </script>
</body>
</html>

Listing 2
enyo-2.0b 	 the Enyo core
fu-theme 	 the additional theme for Enyo
source 	 contains our code and css-files
source/todos.js 	 our app
source/todos.css 	 our app-css
source/package.js 	 references every css/js file we want to use with our Enyo app
index.html 	 root point of our app

Listing 3
enyo.kind({
 name: “rok.Task”,
 kind: enyo.Control,
 tag: “div”,
 style: “border-top: 1px solid #c6c6c6;”,
 published: {
 taskDescription: “”
 },
 components: [
 { tag: “span”, name: “todo” },
 { tag: “button”, content: “Remove”, ontap: “removeTodo”, style: “margin: 10px;” }
],
 create: function() {
 this.inherited(arguments);
 this.todoChanged();
 },
 todoChanged: function() {
 this.$.todo.setContent(this.taskDescription);
 },
 removeTodo: function(inSource, inEvent) {
 this.destroy();
 } });

http://robert-kowalski.de/downloads/enyo_article/article_code.zip
http://robert-kowalski.de/downloads/enyo_article/article_code.zip

CROSS PLATFORM DEVELOPMENT

36 02/2012	 en.sdjournal.org

Our kind is called Task with the namespace rok:
name: “rok.Task”

It will render to a div container which was specified
explictly by the tag property. At components we see
the nesting of controls I talked about before.

Our rendered div will have two nested elements: a
span element for the task text and a button to remove
the task from the list.

Events and Event binding

The removebutton has an eventbinding with on-
tap for tap-events. Tapping is one of the events Enyo
knows and can react to (beside many other much more
complex ones, e.g. dragging over the screen or self-
created events).

{ tag: “button”, content: “Remove”, ontap:
“removeTodo”, style: “margin: 10px;” }

Our tap-event handler points to the method re-
moveTodo where we call this.destroy(); - it destroys
the kind and removes it from the DOM.

removeTodo: function() {
 this.destroy();
}

Published Properties

Our kind has a published property that is exposed
and which we can access and set from outside:

published: {
 taskDescription: “”
},

Within our kind the task description property will be
accessible with this.taskDescription.

Accessing Controls / Components
and automatically called methods
(rendered, constructor, created)

When a kind is created the method create is called
by the Enyo framework automatically. Every kind that
is created inherits from its parent kind with this.
inherited(arguments);.

Enyo kinds have a constructor too, but in this article
we will not need to override a contructor.

Another method named rendered is called every
time when a kind was rendered to the DOM rendered.
We will use it later in the application.

As we want to set the text for the task at creation,
we override the create method and add this.todoCh-
anged();, which is called at creation and sets our pub-
lished and exposed properties on the element with the
name todo:

create: function() {
 this.inherited(arguments);
 this.todoChanged();
},
todoChanged: function() {
 this.$.todo.setContent(this.

taskDescription);
},

this.$ is used to address and access controls with-
in the kind. In this line we access our control with the
name todo and set its content to the value of our de-
scription which was exposed to the outside of our kind.

Every Control in Enyo has getter and setters for con-
tent, CSS-classes and CSS-styles, for example:

.setContent();

.getContent();

.getClasses();

.setClasses();

.getStyle();

.setStyle();

.getAttribute();

.setAttribute();

Now let’s play around with that kind and test if ev-
erything works as we intended by creating some tasks
in our JavaScript console of the browser. We will use
our exposed properties to set task descriptions and
then change the textcolor of one kind to get familiar
with the getters and setters Enyo provides.

var task1 = new rok.Task({
 taskDescription: “Buy Milk”
}).write();

var task2 = new rok.Task({
 taskDescription: “Wash the car”
}).write();

task2.setStyle(‘color: red;’);

Figure 1: Creating tasks in Chromium

Getter and Setter

We have just seen a list of setters and getters from
buildin Enyo properties. And we played with the setter
for the style of a Control in the console of our browser.

But Enyo does not only provides getter and setter

EnyoJS, Phonegap and node.js for Cross-Platform-Development: Developing a todo application

3702/2012	 en.sdjournal.org

for the buildin properties of kinds. It also generates
getter and setter methods for our exposed properties
that are available from outside (we have defined them
under published before):

// get the exposed property
task1.getTaskDescription(); // “Buy Milk”

//set the exposed property
task2.setTaskDescription(‘Buy Sugar’);
task2.getTaskDescription(); // “Buy Sugar”
task2.todoChanged(); // render it into the DOM

Destroying Controls

In order to remove a Control or kind (Controls are
one type of kinds) we call a method called destroy()
on it, e.g.:

task1.destroy();

EXAMPLECODE Part 2b - Task

Creation of tasks with a user interface

It is nice to have our first kind working, but we need
a way to create tasks without the developer console for
the user of our app. So we add another kind for the in-
put of todo descriptions and the addition of todos to
the document model (Listing 4).

This kind will be responsible for the input of new
tasks, their creation and rendering. We have some
nested components again in this kind. They get a pad-
ding of 10px with the style property. It is a textfield for

input and a button to submit the todo. And we have
an empty component called todolist in which we will
render every todo-kind (the kind we just have created
one step before).

Every time we tap our button labeled with Add, our
addTask method is called.
{ tag: “button”, content: “Add”, ontap: “addTask” }

If the textarea is not empty, we create a new compo-
nent based on our task kind we have created and it will
be rendered later into our todolist container.

if (this.$.todoTextarea.
hasNode().value !== “”) {

 this.createComponent({
 kind: rok.Task,
 container: this.$.todolist,
 taskDescription:

this.$.todoTextarea.hasNode().value
 });
 //re-render todolist
 this.$.todolist.render();

Our properties are accessed again with the this.$-
accessor. After we added a new component to the
DOM-node we have to rerender the node to make our
changes visible.

At the end of the method the inputfield is reset to an
empty state.

this.$.todoTextarea.hasNode().value = “”;

To test our app in the browser we have to modify

Listing 4
enyo.kind({
 name: “rok.Todos”,
 kind: enyo.Control,
 components: [
 { style: “padding: 10px”, components: [
 { tag: “input”, name: “todoTextarea” },
 { tag: “button”, content: “Add”, ontap: “addTask” }
]},
 { name: “todolist” }
],
 create: function() {
 this.inherited(arguments);
 },
 addTask: function(inSource, inEvent) {

 if (this.$.todoTextarea.hasNode().value !== “”) {
 this.createComponent({
 kind: rok.Task,
 container: this.$.todolist,
 taskDescription: this.$.todoTextarea.hasNode().value
 });
 //re-render todolist
 this.$.todolist.render();
 //reset input
 this.$.todoTextarea.hasNode().value = “”;
 }
 }
});

http://robert-kowalski.de/downloads/enyo_article/article_code.zip

CROSS PLATFORM DEVELOPMENT

38 02/2012	 en.sdjournal.org

the script tag in the index.html file. This will create our
kind and render it.

<script type=”text/javascript”>
 new rok.Todos().write();
</script>

EXAMPLECODE Part 2c - Input

Some styling

From the beginning a basic theme was included
in the templates for the app, it is called fu-theme. We
can use it to style our todo app and make it look more
attractive. By the way: CSS-classnames in Enyo are de-
fined with classes.

The class “enyo-fit” ensures that our app is filling
every screen with different sizes. We create a smal
kind for some basic styling: (Listing 5).

As you see, this last kind provides a container for
our app with some basic css classes and styles. The
todos-kind is added as a nested component, togeth-
er with a headline for our todolist. The todos kind
itself is nesting our task-kind which are added by
tapping the submit-button.

In addition to that we can add some CSS to the
todos.css we have included in our package.js us-
ing enyo.depends();

body { background-color: #eee; }

In order to use our new parent kind we open in-
dex.html again and modify the JavaScript tag in the
body to these lines:

<script type=”text/javascript”>
 new rok.TodoApp().write();
</script>

EXAMPLECODE Part 2d – Styling

Adding a store for our tasks

Every time we are refreshing the page or are restart-
ing the app we lose our tasks. A solution for it is to save
our tasks with the JavaScript library lawnchair into the Figure 2: The app running in Chromium

Listing 5
enyo.kind({
 name: “rok.TodoApp”,
 kind: enyo.Control,
 classes: “enyo-fit, theme-fu”,
 style: “background-color: #eee; text-align: center;”,
 components: [
 { tag: “div”, content: “Todos”, style: “padding: 10px; font-size: 18px; \
 font-weight: bold;” },
 { kind: “rok.Todos” }
]
});

Listing 6
<!-- load lawnchair -->
<script src=”lib/lawnchair-0.6.1.min.js” type=”text/javascript”></script>
Lawnchair will be initialized before we initialize our application-kind in the index.html:
var lawn = new Lawnchair(‘todos’, function(store) {

});

new rok.TodoApp().write();

http://robert-kowalski.de/downloads/enyo_article/article_code.zip
http://robert-kowalski.de/downloads/enyo_article/article_code.zip

EnyoJS, Phonegap and node.js for Cross-Platform-Development: Developing a todo application

3902/2012	 en.sdjournal.org

DOM. So we download and add lawnchair to our index.
html: (Listing 6).

Our kind rok.Todos needs some additions and refac-
toring to work properly with lawnchair. You will see that
we have moved the creation of the tasks in a seperate
method called createTask to remove duplicated code.
We use this.createComponent after input was sub-
mitted and additionally for the lawnchair entries pulled
from the lawnchair instance at the rendered method of
the kind: (Listing 7).

The rendered method above is called by convention
every time after the kind is rendered in Enyo. We over-
ride it, reading our tasks from the lawnchair instance
and create tasks based on the results we get.

The method addTask which just read our input be-
fore and created task entries for us now also creates
new lawnchair entries as JSON and saves them in the
lawnchair instance we created at the index.html. Now
our tasks should be populated again in the list even af-
ter a restart of the app.

A small bug

If we test our application and hit the removebutton
we will notice that the removed entries are available
again after a refresh / restart of the app.

Our kind rok.Task which detroys itself if the re-
movebutton is clicked does not remove the task from
the lawnchair store. They are populated again when we
read from our lawnchair instance.

Listing 7
enyo.kind({
 name: “rok.Todos”,
 kind: enyo.Control,
 components: [
 { style: “padding: 10px”, components: [
 { tag: “input”, name: “todoTextarea” },
 { tag: “button”, content: “Add”, ontap: “addTask” }
]},
 { name: “todolist” }
],
 create: function() {
 this.inherited(arguments);
 },
 rendered: function() {
 this.inherited(arguments);
 var self = this;
 if (lawn) {
 lawn.all(function(r){
 for (var index in r){
 self.createTask(r[index].task);
 }
 });
 }
 },
 createTask: function(taskDescription) {
 this.createComponent({
 kind: rok.Task,
 container: this.$.todolist,
 taskDescription: taskDescription
 });
 //re-render todolist
 this.$.todolist.render();
 },
 addTask: function(inSource, inEvent) {
 if (this.$.todoTextarea.hasNode().value !== “”) {
 //get value, create lawnchair entry
 var taskvalue = this.$.todoTextarea.hasNode().value,
 entry = {task: taskvalue};
 this.createTask(taskvalue);
 //save entry in the lawnchair
 lawn.save(entry);
 //reset input
 this.$.todoTextarea.hasNode().value = “”;
 }
 }
});

CROSS PLATFORM DEVELOPMENT

40 02/2012	 en.sdjournal.org

In order to achieve a complete removal of the
task we want to delete we will add some code to the
method which is called by a tap on the removebut-
ton: (Listing 8).

We get all tasks from our lawnchair storage and if it
is the task we want to remove we delete it with lawn.
remove. Having added persistent Todos, we can start
with the creation of apps and a mobile webapp now.

EXAMPLECODE Part 2e - lawnchair

Make an app with Phonegap

Phonegap is a native „Shell“ for HTML5 Applications
which is basically a webview inside some native code.
It is Open Source Software and licensed under Apache
License Version 2.0 license. Phonegap has the possibil-
ity to add native written plugins (e.g. in Objective-C or
Java for iOS / Android).

I would recommend that for elements that are per-
formance critical in the application, for new internal
Phone-APIs for which no Phonegap plugins exist yet
or for UI elements that are hard to realize with HTML5.
These plugin APIs are exposed to us as JavaScript-API in
the Phonegap webview.

In order to make our app available on iOS we have
to install Apple Xcode and then Phonegap. With the
Android SDK installed, we can easily make an app from
the same codebase for Android.

For the Android application we have to install the
Android SDK. I would recommend to install Eclipse and
the Android SDK for Eclipse, too.

In Xcode on OSX the setup of our app with Phonegap
is really easy and straight forward. After the creation of
a Phonegap Project in Xcode, we have to locate the
generated www folder and copy our files into it. The
www-folder contains a generated index.html which we
should not overwrite, but modify to our needs (loading
our JavaScript and CSS files, initialization of our app).

The Android Application needs some more steps
for the initial setup. We have to create some folder
and files on our own and change some configura-
tions. There is a detailed guide for it in the Phonegap
Docs. Even if the setup for a Android app is slightly
more complex, the setup should not take longer
than 10 minutes after the Android SDK and Eclipse
is installed.

Figure 3: The app running in the Android Emulator

Deploying the todo app as webapp
on heroku as node.js app

Node.js is an event-based platform for serverside
JavaScript which was invented three years ago by
Ryan Dahl.

To use it for our webapp, we install the latest
stable node.js and the package manager for node.
js: npm. I assume git is already installed as version
control system.

After installing the server and package manager we
have to create an account at heroku.com and a first app
through the webinterface. We follow the instructions
on the screen and also may have to install the heroku
toolbelt.

Listing 8
removeTodo: function() {
 //remove it from the lawnchair store
 var taskToRemove = this.$.todo.getContent();
 if (lawn) {
 lawn.all(function(r){
 for (var index in r){
 if (r[index].task === taskToRemove) {
 lawn.remove(r[index].key);
 }
 }
 });
 }
 this.destroy();
}

http://robert-kowalski.de/downloads/enyo_article/article_code.zip
http://phonegap.com/start#ndroid
http://phonegap.com/start#ndroid

EnyoJS, Phonegap and node.js for Cross-Platform-Development: Developing a todo application

4102/2012	 en.sdjournal.org

Installing Express and the
creation of the webapp

We also need to install the express-framework with
npm install -g express and create our basic app:

express app. After that, we have to copy our Enyo
app to the freshly created folder public and make
some minor changes to the app.js, which also was cre-
ated from express. We have to replace

// Routes
app.get(‘/’, routes.index);
with

// Respond with Enyo app
app.get(‘/’, function(req, res){

 res.sendfile(‘index.html’);
});
and in order to deploy on heroku, replace
app.listen(3000);
with:

var port = process.env.PORT || 3000;

app.listen(port, function() {
 console.log(“Listening on “ + port);
});

EXAMPLECODE Part 3 - Heroku

Deployment

As we created an account at heroku and set every-
thing up (git remote) we just need to push to heroku:

git add .

git commit -m ‘initial app commit’

git push heroku master

Congratulations! We have just created an application
running on node.js and deployed it with our Enyo app
as webapp to heroku.

Conclusion - What we have got and
lessons we have learned

At the end of the day we have got a tiny todo app.
But it is an easy example that showed us the follow-
ing facts: with that small codebase we coded once
in one language we are able to package apps for
the markets/stores of iOS (Apple), Android (Google),
Windows Phone 7 (Microsoft), Blackberry (RIM) and
webOS (HP).

Additionally we created a (mobile-) webapp,
which can be used by the browser of smartphones.
It does not need appstores and the review process of
the appstores. Updates to the webapp are published
immediatly. It was deployable to production in a few
easy steps.

If we would want to create desktop applications,
we could even package it in another native shell,
maybe one for desktops, using Intel AppUp Encap-
sulator or the MacGap project. We are able to create
real desktop applications in addition to our native
Phonegap shell and mobile website with minimal
effort.

Next Steps
Getting a better design that attracts alot of people

would be a tough next step for our next iterations with
the todo app. We could add some CSS or create some
widget-related kinds that helps us with the user in-
terface, e.g. a spacer-kind which would consist of CSS
mainly. We could place that UI helper between the re-
movebutton and the task description.

Another next step could be a couchDB- or mon-
goDB-backend on a server to save and deliver our tod-
olist / tasks. Equipped with that backend we could run
the mobile site (first step deployed in this article), sev-
eral apps and even an API for external developers that
all share the same data.

We could interact with that webservice (couchDB or
mongoDB) in the way we currently use our lawnchair
instance for saving and deleting our tasks and would
have to set up AJAX requests that send and receive
JSON instead of using lawnchair in our Enyo app.

Further Reading

http://enyojs.com

http://phonegap.com

http://appdeveloper.intel.com/en-us/encapsulator-
beta

http://westcoastlogic.com/lawnchair/

http://nodejs.org/

Robert Kowalski

Robert Kowalski is working as Javascript
Ninja at Jimdo. Before he started working at
Jimdo he worked as mobile developer and
created mobile websites and applications.

http://robert-kowalski.de/downloads/enyo_article/article_code.zip
http://enyojs.com/
http://phonegap.com/
http://appdeveloper.intel.com/en-us/encapsulator-beta
http://appdeveloper.intel.com/en-us/encapsulator-beta
http://westcoastlogic.com/lawnchair/
http://nodejs.org/

CROSS PLATFORM DEVELOPMENT

42 02/2012	 en.sdjournal.org

Writing mobile applications for multiple plat-
forms is a real issue in these days of fragmen-
tation. Suppose you have been asked to create

a mobile application that customers could discover in
an application store such as the Android Market or the
Apple iOS Appstore, but also reach through the mobile
web. That sounds like several jobs at first. Perhaps you
might think that this project will require at least one
team for each native application platform, and then
another one for the mobile website. Thanks to hybrid
mobile applications, that may no longer be the case.

As mobile device technology has improved, HTML5
has become a real option for creating a single user in-
terface for both native applications as well as for the
Web. Many giants in technology believe that HTML5 will
eventually be the only cross-platform programming lan-
guage. Chances are good that in the future HTML5 will
be the vernacular for everything mobile. Rather than
writing an application natively for each and every mo-
bile platform, and then once again for the mobile web,
consider this instead. Set up web services to handle any
server-side data manipulation your application might
need to provide and use HTML5 to create and maintain a
single user interface. A novel approach to native applica-
tions known as hybrid applications could be your answer.

What is a hybrid application?
A hybrid application refers to a native application

that uses a single full-page web browser control as its
only user interface. The HTML that consists of the appli-
cation’s UI is served directly from the application itself
so that it does not require an Internet connection in or-
der to function. Hybrid applications may still make use

of native functionality of the device such as the camera,
geolocation services, and accelerometer by accessing
native code through a JavaScript bridge. Essentially,
that HTML code is wrapped by a native shell that of-
fers a library of functionality to the UI. This bridge code
gives the HTML5 user interface the ability to act like
a native application without requiring a native user
interface.

A hybrid application may be written from scratch us-
ing the appropriate development environment for the
native application in question. Just make sure that the
main web browser control “listens” for HTTP requests
for a certain URL. If the browser control sees a request
that matches a certain criteria that it is looking for, it
should trigger some sort of activity. Alternately, tech-
nologies such as appMobi or PhoneGap offer build ser-
vices that give you the ability to create such a native
application from just the HTML and JavaScript files that
would comprise a mobile website.

Hybrid applications act just like any other native appli-
cation once they are built thanks to HTML5. They may be
created as “ad hoc” builds for testing, or built for produc-
tion and submitted to the appropriate application store.

Why HTML5?
There are many reasons why developing your next

mobile application using HTML5 is a good idea. While
some may say that performance might be an issue, or
that JavaScript on a mobile device is harder to debug
than native programming languages, there are some
real benefits to writing your application user interface
only once using HTML5.

Hybrid Applications Help
Relieve Cross Platform Pain
Writing mobile applications for multiple platforms is a real issue in
these days of fragmentation. Suppose you have been asked to create a
mobile application that customers could discover in an application store
such as the Android Market or the Apple iOS Appstore, but also reach
through the mobile web. That sounds like several jobs at first. Perhaps
you might think that this project will require at least one team for each
native application platform, and then another one for the mobile website.
Thanks to hybrid mobile applications, that may no longer be the case.

Hybrid Applications Help Relieve Cross Platform Pain

4302/2012	 en.sdjournal.org

Your application is “future-proof”

Application interfaces written in HTML5 will still be
usable and relevant in the future even as technology
advances and changes around it. The Web isn’t going
away anytime soon, and the HTML5 standard is being
incorporated into more and more web browser soft-
ware packages than ever before. Contrast that stability
with native programming. Even if a single native cod-
ing paradigm were to win out and all the others were
banished to the scrap heap and forgotten, HTML5
would still be viable since it can be used to enhance
development as well as create applications on its own.
As a matter of fact, as technology progresses, HTML5
applications will continue to perform better thanks to
software and hardware updates to mobile devices.

Technology leaders have endorsed HTML5

Many technology companies believe that there will
come a point in the near future where web applications
and native applications will converge. HTML5 will play
a significant role in that convergence. Since Steve Jobs
effectively killed Flash in a memo written in April of
2010 (link: http://www.apple.com/hotnews/thoughts-
on-flash/) HTML5 has been truly crowned the only via-
ble cross-platform programming language for mobile.
By writing a single interface for mobile using HTML5,
you’ll be saving effort that might be wasted creating
and maintaining a native user interface. Google’s strat-
egy in mobile also relies heavily on adoption of HTML5.
The fact that both Android and iOS operating systems
include web browsers that are fully HTML5 compliant is
a great indicator of that support.

HTML5 development is cost effective

Writing native applications for iOS in objective C re-
quires a coder who is familiar with that language. Those
programmers are scarce, and their skills are valued at
a premium. HTML5 developers on the other hand are
everywhere. Although HTML5 is relatively new, HTML
has been with us since the dawn of the Internet in the
‘90’s. It is a language that is easy to pick up, but requires
some time to master. Web developers are less costly to
find, train, and pay than native code developers.

Faster devices give HTML5 more power

With each passing day, mobile device manufactur-
ers roll out newer and more powerful devices. Updates
to the JavaScript parser browsers and browser controls
will keep websites and hybrid applications running at
speeds comparable to native applications in the future.
The iOS operating system now gives HTML5 and CSS3
a direct path to hardware acceleration that delivers on
the promise of an HTML5 user interface that looks and
feels native. Similarly the Android V8 JavaScript engine
will also accelerate HTML5 user interfaces.

Easy maintenance

One certainty in the programming business is that
things change. Oftentimes, things change quickly de-
pending on customers’ tastes, new technologies, or
new opportunities that come up. By building the user
interface of your mobile applications using HTML5, you
can be sure that your customers will have the “latest and
greatest” at all times rather than trying to play “catch
up” getting things up and running. The user interface
will only have to be altered once, so it cuts the amount
of work to make changes for multiple platforms down
considerably. Depending on how your application is
created, you may even be able to post the new user
interface to the Web and have your application down-
load it directly rather than forcing your customers back
through the application stores for an upgrade.

Hybrid applications give you access to de-
vice-level features

If your application needs to get access to features
of the device itself such as the accelerometer or save
data to the file system for later retrieval, a hybrid appli-
cation built using appMobi or PhoneGap will provide
the bridge capability to make those applications ac-
tive. If you build your hybrid application from scratch,
of course you’ll have to add those device-level features
yourself.

What challenges will you face?
Although hybrid applications running HTML5-en-

abled user interfaces solve a lot of problems with cross-
platform application development, there are still issues
that need to be addressed.

Device display resolution and size ratio

Writing a hybrid mobile application for multiple
devices can prove to be a challenge. One issue is that
devices have different native resolutions. Applications
with too small a resolution will cause the application to
look “blocky” or “fuzzy” when they are scaled up to run
on a device with a larger resolution.

There are two schools of thought to writing an appli-
cation that displays appropriately on multiple devices.
The first technique is that the developer builds the ap-
plication UI once and scales it appropriately to all de-
vices. This type of application is built to the width of the
largest device supported and uses scaling commands
to size the application down to fit on devices with a
smaller resolution. The second school of thought as-
sumes that the developer detects the platform as the
application starts up and makes appropriate modifica-
tions to the UI, essentially repositioning the UI for each
supported device. There are unique benefits and draw-
backs to each of these techniques.

http://www.apple.com/hotnews/thoughts-on-flash/
http://www.apple.com/hotnews/thoughts-on-flash/

CROSS PLATFORM DEVELOPMENT

44 02/2012	 en.sdjournal.org

Build Once

If you decide to build the application once for all de-
vice resolutions, be aware of “dead space” issues as well
as issues that will crop up if your application is designed
to rotate between a portrait and landscape orientation
and back again.

Unfortunately, there is a trade-off to building the
application at maximum size and sizing appropriately.
This technique forces developers to give up valuable
screen space on certain devices. Because the screen ra-
tio of these devices vary from device to device, creating
an application using a “build once” method will result
in some “dead space” in the application on some plat-
forms. Take a look at the diagram below (Diagram 1).

Because sized applications suffer from two very dif-
ferent forms of “dead space” issues between landscape
and portrait orientation, building an application using
this technique makes it very challenging to also build
in the ability to handle orientation changes. Develop-
ers may want to consider locking the orientation of the

application to always show in portrait or landscape in
order to keep this from being a problem.

To build an application for this case, scale the applica-
tion for the biggest screens and then allow the hardware
to display at the specified width. Just like the Mike Tee-
vee’s chocolate bar in “Willy Wonka” (http://en.wikipedia.
org/wiki/Charlie_and_the_Chocolate_Factory#The_
Television_Room), build the application for the biggest
screens and then use the device’s browser software to
shrink the page to fit. While scaling an application up
creates “fuzziness” or “pixilation”, scaling an application
down to a smaller resolution just sacrifices some of the
small detail that would be visible on larger devices.

For example, suppose the customer requires an
application that displays properly on both the iPad
and the iPhone. The iPad has a native resolution of
1024x768 pixels, but the older iPhone has a resolu-
tion of 320x480. In order to build an application that
would look appropriate on both devices, the applica-
tion should be built with an HTML component that was
fixed at 768 pixels wide (assuming the application runs
in portrait orientation).

A final consideration to applications that are “built
once” is that UI elements must be built with the small-
est screens in mind. Although the iPad can easily sup-
port a screen with five or six icons wide, an iPhone or
Android handset device will require an icon that is at
least 120 pixels square to look appropriate after being
sized down for smaller devices. Make sure that your ap-
plication audience is fine with a particularly large-look-
ing user interface on devices with a larger resolution
before you settle on the “build once” technique

Sense and modify UI for the platform

As an alternative to “build once”, an application can
be built to sense what type of device it is running on
and adjust the user interface accordingly. This option
is best for applications that don’t scroll and aim to pro-
vide an experience closest to a true native application.

This option will make the application faster to load as
well since the device’s processor won’t have to work on
the task of scaling all the UI elements for the application
whenever something must be shown on the screen.

Hybrid application packages such as appMobi and
PhoneGap will actually report to your HTML code what
type of device it is running on. You can use this infor-
mation to detect which platform the application is run-
ning on and react accordingly. Furthermore, any web
applications can detect the screen dimensions using the
JavaScript screen.width and screen.height parameters.
Based on that data, a developer could have the appli-
cation react by loading alternate CSS3 documents and
JavaScript libraries. These alternate files would alter the

When an
application runs
on a device
other than the
iPad in portrait
orientation, there
will be some
unused space
visible at the
bottom of the
screen. Developers
must fill this space
with non-essential
elements just to
reduce users’
confusion.

In Landscape
mode, the
opposite of the
portrait “dead
space” problem
is evident.
Since handheld
devices are
longer and
skinnier,

when the viewport sizes the application down
there will be space on the iPad that is simply not
visible on Android or iPhone handheld devices.

Diagram 1

Hybrid Applications Help Relieve Cross Platform Pain

4502/2012	 en.sdjournal.org

UI elements size and position accordingly. Use the CSS3
rules below to build application style sheets: (Table 1).

For more information on CSS rules, check out
w3Schools’ CSS tutorial online here:

http://www.w3schools.com/css/default.asp

To include external CSS3 documents, add a style ele-
ment referencing the filename to the head element of
the application’s HTML document.

<link href=”CSSFILENAME.css”
rel=”stylesheet” type=”text/css” />

Unfortunately, sizing for each device comes with a
cost. The user interface for the application must be de-
signed for every device it supports. Once the application
is finished, testing on multiple devices must be done to
make sure that the application performs as expected.

In summary, consider creating applications using the
“build once” approach for applications that don’t re-
quire orientation changes and are able to “flow” using
customary CSS positioning rules. Developers building
an application that is meant to feel more like a native
application should eschew some of the conventions of
the web and consider sticking with a more specialized
approach of sensing each platform and modifying the
user interface appropriately.

Limited standardization of native resource
access

Not every mobile device is created equal. Building a
hybrid application for Blackberry will be subtly different
than building an application for iOS or Android because

not all Blackberry devices feature a webkit-enabled
browser control in their developer toolbox. Depending
on the devices that you have to target, you will have to
make exceptions in your hybrid application, or drop sup-
port for a device all together.

For example, in the PhoneGap API there is no JavaS-
cript API bridge for the Media object for Symbian or Black-
Berry. The only platforms that support this particular
command are Android, iOS, and Windows Phone 7. Fur-
thermore, there are some quirks to some PhoneGap com-
mands as well. The Accelerometer command for example
works subtly different on an iOS device than on Android,
or BlackBerry. The Accelerometer object is not available to
the Symbian or Windows Phone 7 platforms. The appMo-
bi build system only supports iOS and Android builds.

Despite support for newer versions of platform oper-
ating systems, many older devices are simply not able to
run hybrid applications. Even if you were to build the ap-
plication from scratch yourself on every platform, these
older devices are unusable because the web brows-
er control either doesn’t support webkit commands
(http://en.wikipedia.org/wiki/WebKit), or the operating
system makes the JavaScript bridge technique impos-
sible. Webkit browser controls are required to create an
HTML5 experience that is as close to native as possible,
and the JavaScript bridge is required to access the native
capabilities of the smartphone device. Luckily, the smart-
phone market is continually turning over. Smartphone
technology completely turns over every two years, so it is
only a matter of time until these older devices are simply
no longer used.

A simple solution to this problem is to just not sup-
port platforms that pose unique challenges to hybrid

Rule Use Example Rule

position
Use the position rule to place UI elements by pixel coor-
dinate in an application. This rule must be set in order to
take advantage of the top, left, bottom, and right rules.

position:absolute;

top/bottom

Use one of these rules to position UI elements vertically.
The top rule positions the element from the top of the
parent element, while bottom positions the element up
from the bottom of the parent element.

top:30px; bottom:25px;

left/right

Use one of these rules to position UI elements horizontal-
ly. The left rule positions the element in from the left side
of the parent element, while the right rule positions the
element in from the right side of the parent element.

left:25px; right 100px;

width Use this rule to scale the width of a UI element . width:250px;

height Use this rule to scale the height of a UI element. height:120px;

display Use this rule to turn on and turn off UI elements in the
application. display:none;

Table 1: CSS3 rules

http://www.w3schools.com/css/default.asp
http://en.wikipedia.org/wiki/WebKit

CROSS PLATFORM DEVELOPMENT

46 02/2012	 en.sdjournal.org

application development. Spending more resources than
necessary is a bad idea, and if there is not an overwhelm-
ing need for a particular “problem” platform, simply ignor-
ing it until the technology catches up to your application
is an option.

The alternative solution is to ask your hybrid applica-
tion to sense the platform it is running on, and react ac-
cordingly. Perhaps the application “downshifts” into a
different mode that doesn’t require certain device capa-
bilities thus allowing less capable devices to still run the
application, just without all the bells and whistles. Alterna-
tively, perhaps this less capable application instead stores
choices for use later on a more capable platform such as
the desktop Web.

Compiling hybrid applications

Although the user interface for the applications run-
ning on all the platforms is unified, you will still need to
leverage some sort of native application development
resources to create a final binary application. In order to
build an Android or BlackBerry hybrid application from
scratch you would need the appropriate Java develop-
ment environment running in Eclipse. Windows Mobile
requires Microsoft Visual Studio. You’ll want to install the
Carbide IDE to build a Symbian application from scratch.
In order to develop a native iOS application, you would
need XCode running on a Mac, as well as a subscription to
the iOS developer program.

Luckily, companies like appMobi and PhoneGap offer
hosted build systems to solve this very problem. The ap-
pMobi XDK allows developers to write their hybrid appli-
cation using just HTML5, JavaScript, and CSS, preview it in
its simulator, and then have the binary built in the cloud
and delivered to them. The PhoneGap build system has a
similar cloud build capability that will turn web code into
a native application.

Application stores

Once you have your hybrid application built, you should
put some thought into getting your application into the
appropriate application stores for customers to install on
their devices. Hybrid applications are completely compli-
ant with all application stores’ terms of service, including
the Apple iOS Appstore.

Although the Android Market and the Blackberry App
World application stores allow developers to submit just
about any type of application and get it into the market
with few hassles, other application stores require that you
wait for the company to review your application before
accepting it. Get acquainted with what is required to sub-
mit your application to these application stores as soon
as possible in order to prevent heartbreak later. The most
notable example of an application store that asks devel-
opers to jump over both technical and logistical hurdles

before accepting an application into the store is the Apple
iOS Application Store.

In order to submit an iOS application to the Apple Ap-
pstore, the fully created application must be signed and
registered using an active iOS Developer Account. A sin-
gle-developer subscription to the iOS Developer program
is currently $99 a month. Furthermore, in order to prove
that the developer requesting the account is in fact an
employee of a particular institution, a rigorous battery of
questions is required including the company’s tax id. An
Apple computer is also required to complete the final step
of uploading the binary to iTunes Connect. Once the ap-
plication has been submitted, there is an approval process
that takes on average two weeks to complete, and could
simply result in the application being rejected rather than
submission into the store.

Conclusion
In conclusion, consider writing hybrid applications in

order to address the challenges posed by fragmentation
in the smart phone market. With the new CSS3 trans-
forms, HTML5 has become a favorite language of technol-
ogy leaders for cross-platform mobile development. Even
without those endorsements, HTML has been around
a long time and is not going away anytime soon. That
means that finding developers to build and maintain the
new UI is cost-effective. Just be sure to watch out for the
challenges that a hybrid application poses. The spectrum
of device display size ratios will have to be addressed, and
there should also be a plan for how to deal with any vari-
ance in the access to native resources that your application
might require. Also, finding the native technical resources
to build your hybrid application into a native binary and
submitting it to the appropriate application stores are
other challenges faced by mobile application developers.
So for your next project, when you are asked to create ap-
plications for mobile that will run on both the Web and in-
stall from one or more mobile application stores, consider
creating it using a hybrid application.

Andrew Smith has worked as
a client-side engineer for the
past twelve years. He got his
start writing dynamic HTML on
the web team for MapQuest
and then continued writing
Javascript and CSS for several
successful startups.
At one point, Andrew was
tapped specifically to teach
a course at The Art Institutes

International in Javascript/DHTML.

With the success of the appMobi development ecosys-
tem, Andrew’s role has changed from that of a develop-
er to that of an instructor and technologist. He relishes
the chance to help web developers like him use their
existing skill set to create superior mobile applications.

PROGRAMMING IN PEARL LANGUAGE

48 02/2012	 en.sdjournal.org

Continuous integration is innate in some modern
frameworks, such as Grails, which by default im-
plement testing counterparts around every soft-

ware component, offer powerful mocking mechanism
and configurations for development, test and produc-
tion environments. It is not so automatic in Perl but we
want to show how it can be acquired with a reasonable
effort, that it is largely compensated by many advan-
tages, from code and team members’ point of view.

The Perl ecosystem is rich, from the perspective of
the language, resources and people. For instance, we
are working with many bioinformaticians or specialists
in natural language processing who came to program-
ming through Perl. To successfully integrate their con-
tributions into maintainable large scale projects, the
team must have the right framework and culture. With-
out an environment where they can contribute to real
projects, specialists who have not been trained as soft-
ware engineers may quickly lose their motivation and
their interest in software development. To setup such
a framework, both the technical and the behavioral as-
pects are to be taken into account. Even if one key Agile
motto is to empower all team members and leave to
them the freedom and the responsibility to choose and
optimize their organization, it will often be the role of
core software developers or team leaders to setup the
framework and choose the right tools.

With this perspective in mind, we will go through
testing techniques and present some tools we have
successfully applied for continuous integration and de-
ployment in Perl. We will not try to cover all aspects of
it but we will focus on some coding and testing good
practices, all of which we will try to demonstrate with
practical cases.

Getting code organized
Writing about how to organize code, how to setup

project files, may look rather trivial at a first glance.
However, the intrinsic freedom offered by Perl, that
some would call anarchy, does not force the devel-
oper to build a structured hierarchy. To succeed, an-
archy comes with self discipline and to quote Lutz
Prechelt “writing good Perl programs depends more
strongly on the knowledge and discipline of the pro-
grammer than in most other languages” [1].
If a large part of the poor reputation of Perl in the
community comes from traumatic experiences with
cryptic, awfully long and unmaintainable source
codes, a few good practices can help reduce chaos,
increase maintainability and lets you focus on “get-
ting the job done.”

Damian Conway’s “Perl Best Practices” [2] is the
reference in the domain, but we will present here a
minimal set of directions that have shown to be ef-
ficient in keeping multi-developer projects under
control.

A module can be seen as the atomic file unit of
a Perl project. It is usually stored in a .pm file and
contains a package or a class. Without falling in the
extremes of the inspiring Jeff Bay’s “Object Calisthen-
ics” [3], there are certainly some aspects worth be-
ing publicized among the team. Limiting the length
of subroutines to ten lines, avoiding else construct
or multiple levels of abstraction in one function and
promoting the Don’t Repeat Yourself (DRY) rule are
common healthy habits. Moreover, these practices
will pay off when time comes to maintain the code,
refactor some element or test it.

Continuous Deployment in Perl:
Code & Folk
Continuous Integration is the tactic of decreasing the latency between the
implementation of a new piece of code and its integration in the overall
project. It is the backbone of Continuous Deployment that is often defined as
releasing software very frequently in order to satisfy customer needs and get
their feedback as soon as possible. Both have shown their benefits and play an
important role in the success of the current Agile software development trend.

Gamification in Software Development and Agile

4902/2012	 en.sdjournal.org

Setting up a distribution

A distribution is a set of modules, scripts (CGI or
command line), documentation and packaging deco-
ration. A typical project will consist of a collection of
dependent distributions. Perl already offers almost
25,000 distributions on the CPAN repository. Most of
them are very easy to deploy. Therefore we use the de
facto standard distribution structure, with a couple of
tuning actions.

To create a distribution, the Module::Starter distri-
bution provides a convenient script:
module-starter --mb --module=My::Module \
 --author=”Alexandre Masselot” \
 --email=”alexandre.masselot@gmail.
com”

A directory My-Module/ is created with a default
structure. We add a bin/ sub-directory for the default
location of scripts that will later be deployed by default
in /usr/local/bin. A cgi/ sub-directory can also be
needed, but it must be explicitly specified in the Build.
PL file, for example with:

my %cgis;1

$cgis{$_} = $_ foreach <cgi/*>;

Within the Module::Build->new constructor, add
the parameter:

cgi _ files => \%cgis,2

And finally, before the $builder->create _ build _
script(); add:

$builder->add _ build _ element(‘cgi’);

To ease the deployment and get error messages ear-
ly, it is also a good practice to define the third-parties’
module dependencies, eventually with their version
constraints in Build.PL.

To prepare the distribution for packaging will re-
quire building a MANIFEST index, a MANIFEST.SKIP can
be populated with regular expressions matching files
to exclude:

.*\.tar\.gz$
\.svn\/
Build$
_ build
...

Finally, the project is almost ready to be imported into
a source control manager, such as subversion or github.
To limit unnecessary conflicts, all auto-generated files
shall be excluded: blib/, Build, *.tar.gz etc.

1	 my is used for variable declaration and % defines a hash table.
2	 => is the separator between key/value pairs in a hash and \ is

the reference to the variable.

The new distribution is now ready to be deployed,
but at this stage, it is just an empty shell. The next step
is to start writing code. And with code comes testing.

Testing
“Testing shows the presence, not the absence of bugs”

Edsger W. Dijkstra, 1969

Test Driven Development (TDD) is based on very
short 2-step cycles where a test assertion is written
before the code that passes the test. It has gained in
popularity and increases code stability. For a Perl team
made of people with different backgrounds, TDD offers
the important benefit of leveraging everyone’s contri-
butions. Regarding the Perl language itself, thoroughly
testing the code can also help dramatically in building
a sustainable project. We will not review here all pros
and cons of TDD but we will discuss a couple of behav-
ioral and cultural challenges, before presenting several
useful testing techniques.

Specific Perl reasons for testing code

Mixing hard core developers and scientists with
some basic programming knowledge is common
in multi-disciplinary projects. Both have their own
strengths but when time comes to commit lines of
code, the first ones can have the feeling to get their
project endangered by the latter. Getting a field scien-
tist to write tests first has several major outcomes:

From the software education point of view, he will
have to clearly state “what does my subroutine needs
to fulfill?” before actually coding it and this mindset of-
ten increases the code structure quality;

It allows asynchronous pair programming: a skilled
developer can come afterwards to optimize crucial
components, preserving semantic without the need to
fully master the domain.

Moreover, the anarchist nature of Perl language
does not naturally enforce code readability nor struc-
ture and a project can be killed by poor maintainability
in the medium term. Enforcing strict coding conven-
tions is uncommon to Perl development but unit test-
ing offers a framework around this freedom. If a devel-
oper unleashes himself and produces a rather cryptic
subroutine, he will make it understandable to his peers
via explicit (and readable!) tests demonstrating various
input and outcomes of his piece of “art”. To this respect,
reviewing the tests committed into the code repository
are often a better channel of communication between
team members than scanning the code itself and can
serve as the actual code documentation.

Beside “Perl code is too cryptic”, another very com-
mon criticism is “how to decide which third party’s code

PROGRAMMING IN PEARL LANGUAGE

50 02/2012	 en.sdjournal.org

to use?”. TIMTOWTDI (“There Is More Than One Way To Do
It”) is a Perl mantra and this becomes obvious when the
time comes to browse http://search.cpan.org to find the
best distribution to solve a problem. Checking that an
installed distribution is used correctly, that it fulfills cor-
rectly the target tasks is a first step achieved by tests.
However, we have often experienced that the chosen
distribution does not scale up or does not react correctly
to a new situation. A solution is often to head for a new
distribution on CPAN or to create an original one. At this
point the test suite will guarantee that the new code be-
haves correctly, according to the previous cases. It signifi-
cantly reduces the risks when constantly refactoring the
code, a must-have in continuously deployed projects.

Testing Perl code: practical hints
Since the beginning, testing has been a central part

of Perl development and one can count more than
230,000 tests executed when installing Perl & default
distributions. It is not our intention to cover exten-
sively Perl testing techniques: the reader can refer to
Ian Langworth “Perl Testing: A Developer’s Notebook” [4]
or to the CPAN documentation. We will present here
some practical constructs, useful modules and tech-
niques to guide the developer towards a comfortable
testing environment.

Default testing

Following CPAN distribution standard, test suite
files lay in the t/ sub-directory with a .t suffix and a
number prefix to order the tests. A single test can be
launched via:

perl -Ilib t/01-my-test.t
and all suites via:
./Build test

The text output pinpoints clearly eventual failing as-
sertions and an error code is returned unless all of them
were correct. It is also possible to execute all or parts of
the test suites with the versatile command prove. It can
also report Junit-like output to be integrated by third-
parties tools:

prove --formatter TAP::Formatter::JUnit t >
test.junit.xml

Setting up keyboard shortcuts in your IDE or edi-
tor to these commands will enhance the comfort of
launching tests at a high pace, as often as the file/save
command is hit.

Test::Most

Besides default Perl test mechanisms, the conve-
nient Test::Most distribution combines the most com-
mon testing modules. It provides a large range of asser-
tion statements allowing a rich variety of compact yet
readable test cases. As a source of potential inspiration,

we present here a teaser of such assertions:

•	 a module can be loaded, without compilation errors:

•	 use_ok ’My::Module’;

•	 a Perl truth (displays test name and counts one
failure if $val is false):
ok $val, ’test name’3;

•	 matches a scalar value:
is $val, $expected, ’test name’;

•	 or can be compared with more complex structure:
is _ deeply $hashRef, \%expected, ’test name’;

•	 matches a regular expression:
like myFunc(@args), qr/pattern/, ’test name’;

•	 a variable is greater than a threshold:
cmp _ ok $val, ’>=’, $expected, ’test name’;

•	 or close enough to an expected one:
cmp _ deep $val, num($expected,
$tol), ’test name’;

•	 an exception is thrown and its text matches a regu-
lar expression:
throws _ ok {myFunc(@args)} qr/ex-
ception _ text/, ’test name’;

•	 warnings output matches a regular expression
warning _ like {myFunc(@args)} qr/ex-
pected _ warning/, ’test name’;

Some cross distribution testing can also been done,
typically to check documentation completeness of all
subroutines with POD annotations (Plain Old Documen-
tation is Perl’s equivalent of Javadoc). As it might be con-
venient not to pollute the documentation with private
subroutines, even though privacy does not mean much
in Perl, we can declare all subroutines with their name
starting with ’p _ ’ to be excluded from this check:

use Test::More;
all _ pod _ coverage _ ok(
 { also _ private => [qr/^p _ .+/] }
);
done _ testing();

Mocking

Waiting for minutes before a test suite completes
soon becomes annoying and one direct consequence
is to see developers running it less and less often. It
is important that tests can be completed in the fast-
est possible way for better comfort and productivity.
Therefore, test data should be built to clearly identify

3	 Parentheses can be optional in Perl.

http://search.cpan.org/
http://search.cpan.org/
http://search.cpan.org/
http://search.cpan.org/

Gamification in Software Development and Agile

5102/2012	 en.sdjournal.org

the goal of each test assertion. This is particularly true
when writing regression tests, as the developer must
be encouraged to build the smallest data set produc-
ing a bug. With such a mindset, both execution speed
and maintainability will increase.

To this respect, we can provide a mocked environ-
ment, i.e. a simulated one, not suitable for production
but dedicated to tests. A Test::MockObject module
is available, but we present here a couple of situations
lying outside the object mocking per se.

For example, to test a crawling robot, one could
identify a set of web pages suitable for a given situa-
tion. But launching tests on the web is time consuming,
depends on external resources (tests will fail if the site
is down) and not very polite. One solution is to copy
the remote pages into a directory t/resources/site-
01/, reduce them down to a minimalistic content and
set the root URL as:

’file:///path/to/t/resources/site-01’.

If a production project is aimed at working with a
large database hosted by MySql, it can be convenient
not to launch unit tests against a MySql instance. One
solution is to rely on a lighter SQL engine, such as
SQLite. If the domain/table relation is done via an ob-
ject relational mapper like Rose::DB or DBIx::Class, it
is easy to switch from one database engine to another.

File encapsulation and cleaning

Tests often need data stored in files. Such files can
naturally be hosted in a t/resources/ sub-directory.
However, if data has to be written, or files need to be
modified, it is wise to copy them in a temporary direc-
tory and automatically remove them when the process
ends. To get back to the web site mocking example re-
ferred above, we can create a MockSite module:

package MockSite;
use strict;

use File::Temp qw/tempdir/;
use File::Copy::Recursive qw/dircopy/;
use File::Basename;

sub mockLocalSite{
 my $localdir = shift;4

 my $bn = basename($localdir);
 my $tmpDir = tempdir(“$bn-XXXXX”, CLEANUP

=> 1);
 dircopy($localdir, $tmpDir);
 “file://$tmpDir”;5

}

And therefore call within a test:
use MockSite;
my $urlRoot = MockSite::mockLocalSite(‘t/

resources/site-01’);

4	 shift access and consume the first argument.
5	 last evaluation is returned.

Finally, if we create persistent entities, they should be
deleted at the end of the execution. It is possible to add
a double deletion check in an END{...} block, executed
at the end of the process even if it fails upon an error.

Integration and functional tests

In the previous section, we have not made any ex-
plicit distinctions between unit, regression or other test
categories. However, the discussion was centered on
one module or at most on one distribution. However,
a large project is built as an assembly of basic compo-
nents and the continuous deployment quest needs
this assembly to be tested.

We will not cover in details the following steps, but
we must mention them as they are also important in
our overall process.

If Dist2::Module::B depends on Dist1::Module::A,
some level of integration testing can be achieved in
Dist2/t/*.t files. Nevertheless, for the sake of clarity
and efficiency, it is possible to create a dedicated proj-
ect aimed only at integration testing. These tests might
take longer to execute and be launched less frequently
(every hour) before the distribution is released.

Functional testing, i.e. black box test suites based on
specifications, can also be built in the same manner.

For a web application, some functional and load
tests can be undertaken with Test:::WWW::Mechanics
or, for browser emulation, with WWW::Selenium. At this
point it is also highly recommended to run a web vul-
nerability scanner.

Continuous Integration
Continuous deployment depends on the shortest

latency between committing code into the repository
and deployment. Before deploying the project to pro-
duction servers, we must check that no code modifica-
tion has any side effect either with other modules or
with contributions of fellow developers. To wave such
a signal as soon as possible and limit conflicts, it is ad-
vised to commit code at the highest pace.

But the continuous deployment quest also aims at
letting developers concentrate on creative tasks and
not bother with tedious repetitive testing. The integra-
tion process must therefore be automated and send
reports asynchronously, only if an error occurs.

In a classic approach, a server (or more often, a virtual
machine on a test server) checks for code commits every
5 minutes. If a commit occurred, source code is checked
out and tests are launched. In case of downwards mod-
ule dependency, the inferred tests are also executed. If
any error occurs, an email is sent to project owner (or

PROGRAMMING IN PEARL LANGUAGE

52 02/2012	 en.sdjournal.org

last committer). If all test suites are valid, the code can be
packaged and is ready for the deployment step.

An example of a basic continuous integration au-
tomation that can be written at the shell level, and
launched via a crontab as a suite of commands, where
any failure stops the process and sends an email, is il-
lustrated here:
1	svn status 		 # check for code changes
2	svn update		 # check out
3	perl Build.PL	 # build
4	./Build test	 # launch tests
5	./Build dist	 # package
6	ncftpput -u distuser -p password disthost.
domain.org public _ html/dist/perl/ My-Mod-
ule-version.tar.gz

The packaged distribution is made available at
http://disthost.domain.org/~distuser/dist/perl/My-
Module-version.tar.gz.

Hudson/Jenkins
The solution outlined above can work for simple cas-

es but doesn’t handle distribution dependencies, email
alerts or reporting.

Fortunately, Java gods can be invoked to the rescue
as these aspects are much more evolved in their cul-
ture. Different solutions are possible but we have ob-
tained the best results with the open source Hudson/
Jenkins, the latter being a recent community split of
the project.

Jenkins offers the possibility to integrate a project
via a suite of shell commands, with the same pipeline
as describe above. We will present here, through snap-
shots, a variation of this workflow taking into account
distribution cross-dependencies. Once a distribution
has been tested, it is installed in a local directory ref-
erenced by an environment variable $INTEGRATION _
INSTALL _ DIR (./Build install --install _ base
$INTEGRATION _ INSTALL _ DIR). Thus, it is available for
further tests, with $PERL5LIB = $INTEGRATION _ IN-
STALL _ DIR/lib. In Jenkins, such environment vari-
ables can be defined system wide. For each distribu-
tion, a new project is created and the major steps are
illustrated in figures 1 to 4.

Figure 2: testing and local deployment in $INTEGRATION_INSTALL_DIR directory.

Figure 1: Subversion status triggers the project build. Other systems SCM are available

http://disthost.domain.org/~distuser/dist/perl/My-Module-version.tar.gz
http://disthost.domain.org/~distuser/dist/perl/My-Module-version.tar.gz

Gamification in Software Development and Agile

5302/2012	 en.sdjournal.org

Alert on failures

The classic way to alert team members of a fail-
ure is via email or rss feeds. However, experience
shows that developers can be prone to ignore such
alerts. To counter this natural tendency, we propose
a physical solution, as it is harder to ignore a visible
raised flag by the coffee machine than a folder in a
mail client.

Jenkins status can be checked at http://yourserv-
er:8080/api/xml and we parse this output for status
other than ’blue’. To raise or lower a flag (figure 5),
we use the light Yoctopuce servo controller [5] via
a cron script (flagit, the servo C++ code is a simple
adaptation from the demo code):

#!/usr/bin/env perl
use strict;
use LWP::Simple qw /get/;
use File::Basename qw/dirname/;

my $xml = get(‘http://cih-1830:8080/api/xml’);
my $angle=($xml=~/<color>(?!blue)/)?1000:-1000;6

my $cmd=dirname($0).”/flagit 1 $angle”;
system $cmd;
	

6	 =~ to match a regular expression

Figure 3: distribution archive is built, with version number and -latest.tar.gz suffix to provide a constant name
for the future deployment. These archives are copied to a public web server.

Figure 4: Jenkins overall status: the better the weather icon, the more stable the project.

Figure 5: Yoctopuce servo driven flagging system
to display the continuous integration status

PROGRAMMING IN PEARL LANGUAGE

54 02/2012	 en.sdjournal.org

If the team is still not responsive to a flag, a similar
code can be used to trigger a beacon with the Yocto-
puce PowerRelay[6], an extreme and hardly escapable
solution.

Deploying the application
The final step in Continuous Deployment is... to

deploy, to install the application on a production
computer.

In the previous step, we proposed a way to build a
set of distributions and copy them in a web directory.
Therefore the installation, from the production server
side, can be done in 4 steps:
1	wget -O - http://disthost.domain.org/~distuser/
dist/perl/My-Module-latest.tar.gz | tar -xzvf
-

2	cd My-Module
3	perl Build.pl && ./Build && ./Build test
4	./Build install

There are two major issues with this solution. The
first one is the installation of required third-parties
modules. We can either assume that the dependency
set evolves slowly and install them manually, or invoke
./Build installdeps to grab them automatically
from CPAN repository. The second challenge is that
root privileges are required to install a distribution in
the default location and it is not a best practice to run
cron installations with such privileges.

A solution is to run the install script with the argu-
ment --install _ base /dist/dir/ and later set
PERL5LIB and PATH environment variables respectively
to /dist/dir/lib and /dist/dir/bin.

We provide on CPAN a module HON::Deploy wrap-
ping these few steps and adding a few more function-
alities, such as deploying cgi scripts, installing multiple
distributions at once or overriding shebang lines with
an appropriate perl path:

 ./hon-deploy-perl-distrib.pl \
--dist=http://.../Module-A-latest.
tar.gz,http://.../Module-B-latest.tar.
gz \
--dir-base=$HOME/perl \
--dir-cgi=$HOME/public _ html/cgi-bin \
--perl-interpreter=$(which perl)

There are far more possibilities for installing code, in-
cluding remote procedures, but we hope that we have
shown in this section how convenient, robust and pow-
erful Perl deployment can be.

Conclusion
In our experience, the best practices presented here

cover most of what is needed to reap the benefits of
Continuous Integration and Continuous Deployment
in Perl projects. With this safety net in place, the risk of

inadvertently injecting defects and breaking product
functionalities is minimized and the whole team can
confidently move forward. New features can be pushed
more rapidly and more smoothly into production, to
the benefit of the end users. Not only the whole devel-
opment process becomes much more predictable and
manageable, but because developers can see the re-
sult of their work and receive feedback in a more timely
fashion, their motivation and their ability to innovate
increase as well. Setting up this framework is not very
difficult and doesn’t take much time. Making sure that
the team adopts it requires clear communication but is
not a huge challenge either given the current momen-
tum of test driven design and Agile methodologies.
Once the team members realize how the approach in-
creases their productivity and the quality of their work,
don’t be surprised if they take ownership of the process
and start making suggestions to make it even better.

Alexandre Masselot and Pierre-Antoine Queloz
alexandre.masselot@gmail.com,

paqueloz@gmail.com

References

[1] Lutz Prechelt. “Are Scripting Languages
Any Good? A Validation of Perl, Python, Rexx,
and Tcl against C, C++, and Java”. Advances
in Computers, Vol. 57 (2003), pp. 205-270

[2] Damian Conway. “Perl Best Practices:
Standards and Styles for Developing
Maintainable Code” O’Reilly (2005)

[3] Jef Bay. “Object Calisthenics”. The
ThoughtWorks Anthology: Essays on Software
Technology and Innovation (2008)

[4] Ian Langworth “Perl Testing: A Developer’s
Notebook”. Chromatic, O’Reilly (2005)

[5] http://www.yoctopuce.com/
EN/products/yocto-servo

[6] http://www.yoctopuce.com/
EN/products/yocto-powerrelay

mailto://alexandre.masselot@gmail.com
mailto://paqueloz@gmail.com

http://andevcon.com

PROGRAMMING IN PEARL LANGUAGE

56 02/2012	 en.sdjournal.org

With this article you will learn how to bootstrap
a Dancer website, how to run it locally for de-
velopment purposes, and how to develop a

complete Dancer application.

Why Dancer?
Dancer is a Perl web framework, heavily influenced

by the Ruby Sinatra framework. After learning and us-
ing Sinatra, Dancer developers decided that a similar
framework was missing in the Perl community. Dancer
began as a rewrite of Sinatra for Perl but soon grew
up as a standalone project. Although some Sinatra
features are still easy to notice, Dancer is no longer a
simple reimplementation but a new tool by itself. The
Dancer website is at http://perldancer.org/.

Dancer has a small footprint. This means that it de-
pends on a small number of modules, making it easy to
install on any operating system, as long Perl is available.
A fair amount number of plugins are available that can
be installed for extra features.

Our Project
In this article we will develop a full Dancer applica-

tion, a photo gallery named Polonaise. It will be a little
different from standard web applications. Instead of
a form to upload pictures, we will implement photo
uploading by POST requests, in a REST approach. This
means that the user will be able to upload a photo from
anywhere, with or without a browser. To help test the
application we will develop a little Perl command line
tool to upload pictures.

Following this same idea, to get a file one will be
able to use a web browser, checking each gallery pho-
tos, or fetching a picture or picture meta-data directly
using any other tool. To delete a photo, a web request
will also be used.

Therefore, Polonaise will answer accordingly with the
HTTP verb that is issued to the web server. POSTs are used
to upload pictures, GETs are used to browse the gallery,
and DELETEs are used to remove files or full galleries.

Learning the basic Polonaise steps
To start using Dancer you must make sure it is in-

stalled on your system. Usually it is a matter of running
cpan Dancer as superuser, and the Dancer framework
gets installed in your system. After that, a dancer com-
mand should be available.

Our first step will be the creation of a folder and re-
quired files for a dancer application. Although we can
do that manually one can use the dancer command to
bootstrap a dancer application:

	 $ dancer -a Polonaise

Code listing 1 shows the directory structure created
by this command. We will not discuss all the created
files, and only focus on the relevant ones. Dancer follows
the MVC (Model, View, Controller) logic and therefore

Dancing Polonaise With Perl
In the last year the size of the Dancer community has quadrupled,
and the number of Dancer websites is, every day, larger.
Read on to learn why so many people are choosing to Dance

Listing 1: ‘dancer -a Polonaise’ ouput listing the generated files
+ Polonaise
+ Polonaise/bin
+ Polonaise/bin/app.pl
+ Polonaise/config.yml
+ Polonaise/environments
+ Polonaise/environments/development.yml
+ Polonaise/environments/production.yml
+ Polonaise/views
+ Polonaise/views/index.tt
+ Polonaise/views/layouts
+ Polonaise/views/layouts/main.tt
+ Polonaise/MANIFEST.SKIP
+ Polonaise/lib
 Polonaise/lib/
+ Polonaise/lib/Polonaise.pm
+ Polonaise/public
+ Polonaise/public/css
+ Polonaise/public/css/style.css
+ Polonaise/public/css/error.css
+ Polonaise/public/images
+ Polonaise/public/500.html
+ Polonaise/public/404.html
+ Polonaise/public/dispatch.fcgi
+ Polonaise/public/dispatch.cgi
+ Polonaise/public/javascripts
+ Polonaise/public/javascripts/jquery.js
+ Polonaise/t
+ Polonaise/t/002 _ index _ route.t
+ Polonaise/t/001 _ base.t
+ Polonaise/Makefile.PL

http://perldancer.org/

Dancing Polonaise With Perl

5702/2012	 en.sdjournal.org

separates databases from web documents and applica-
tion logic. In fact, by default a Dancer application does
not have any associated database. The view portion is
stored in the views folder, where web templates are
stored. The lib folder is where the controller will be writ-
ten, more precisely in the lib/Polonaise.pm file.

The public folder stores plain HTML files, images, style
sheets and Javascript files. Note that by default Dancer
installs a copy of jquery in your application. We will get
into the other files and folders when we need them.

Our application is already a complete website. We
can test it by running:

	 $ bin/app.pl

That will start a standalone web server listening on
port 3000. Open a browser, enter the address http://loc-
alhost:3000/ and you can test your Polonaise first version.

Once the application files are in place we can start add-
ing actions and rendering HTML. Dancer follows a simple
MVC approach, this means that requests are formulated in
URIs, Dancer then chooses which method to execute for
a given HTTP request, and typically this method chooses
which template to use to generate the HTML which is sent
back to the requester. To better explain this work-flow in
the following sections some requests are implemented.

Picture uploading
As we already stated, uploading photos will be done us-

ing the POST method, whether the user is using a browser
or command-line tool. But before we can upload a photo
we need to have a place to store it. We will create a folder
named gallery inside the public folder. Note that if you want
to deploy this service anywhere, that folder will need write
permissions by the user that is running the web server.

Dancer control code will be written in lib/polonaise.
pm module. The control code is written in routes which

answer to specific HTTP verbs. Each route will answer
to one or more verbs, for a specific web path.

The first thing required to upload a photo is a meth-
od to handle the POST operation. This can be some-
thing like: (Listing 2).

The first line defines a route to be matched each time
a user requests any URL that starts with /upload. The
post in the beginning means that this route will only
match HTTP POST requests. In the URL we have two
placeholders. One, with two asterisks, means that we
expect to match any number of folders. The last aster-
isk, means we want to match just a file name (or folder
name, in fact). So, this route will be invoked if the user
requests the URL for /upload/2011/02/madrid/girl.jpg.
The first two asterisks will match 2011/02/madrid and
the last will match girl.jpg. The splat command in the
beginning of the method retrieves these parameters,
and returns them. Note that when we use the two as-
terisks (named the megasplat), we get a reference to an
array. Therefore, our path will be received as an array.

The upload function, part of Dancer, gets the con-
tent of a file upload (when you use an input tag in HTML
with type file). Before saving the photo being upload-
ed, we need to make sure the path where we want to
store it exists. So, we use the catfile from File::Spec to
concatenate the path under our public folder (we can
get its full path using the setting method). We create
the path if it doesn’t exist, and save it, using the copy_to
method, available on the upload object.

To make this work you must create a web form to sub-
mit pictures, or a standalone application that uploads
it. We decided to show you the application approach,
just to illustrate the use of a REST service. Imagine you
can write your own application to upload photos, from
any device, without the need of a web browser.

Our uploader tool looks like: (Listing 3).

Listing 2:
post ‘/upload/**/*’ => sub {
	 my ($path, $name) = splat;
	 my $file = upload(‘filename’);
	 my $folder = catfile(setting(‘public’), ‘gallery’, @$path);
	 make _ path($folder) unless -d $folder;
	 $file->copy _ to(catfile($folder, $name));
	 return “OK”;
};

Listing 3:
 #!/usr/bin/perl
 use LWP::UserAgent;
 use HTTP::Request::Common;

 my $gallery = shift;
 my $photo = shift;
 my $ua = LWP::UserAgent->new;
 my $res = $ua->request(POST “http://localhost:3000/upload/$gallery/$photo”,
 	 Content _ Type => ‘multipart/form-data’,
 	 Content => [filename => [$photo]]);

PROGRAMMING IN PEARL LANGUAGE

58 02/2012	 en.sdjournal.org

With this code saved in a file upload.pl one can call:
	 $ upload 2012/02/madrid girl.jpg

And it will upload the girl.jpg file to the specified gal-
lery. It would be possible as well to develop the typical
web form to upload photos. With the examples present-
ed in this document you should be able to implement it.

Displaying Galleries List
We now have a method that can display our galleries,

actually let’s make that the root (“/”) of our application.
This means that we can define the following method:

get ‘/’ => {
 redirect ‘/gallery’;
};

This means that whenever a user calls your domain
name, this route will match, and the Dancer redirect
method will be called. This will perform an HTTP redi-
rect to another URL (the /gallery one). The method to
answer to the gallery URL can look like: (Listing 4).

Note that we are not making any restriction where the
user uploads photos. This means we can have galleries to-
gether will images. Here we are considering that if the file
is a folder, it is a gallery, otherwise, it is a photo. In fact, we
want the user to be able to specify as argument the gallery
path he wants to visit. Let’s support it as well: (Listing 5).

In this case we decided to use a regular expression
in the route definition. This gives us more flexibility. We
are matching anything that follows the ‘gallery’

After creating the hash with the information for the
galleries we can call the template method to render the
gallery template, that can be something like: (Listing 6).

This template uses the syntax of Template::Toolkit
templating system. Basically, commands between [%
and %] are interpreted and variables interpolated. Please
refer to the Template module documentation for details.
Dancer uses, by default, a Dancer::Template::Simple
templating system. To use Template::Toolkit we need
to edit the config.yml file (in the root of our Dancer ap-
plication), comment the simple template system, and
adding Template::Toolkit, as presented below1.

template: “simple”
template: “template _ toolkit”
engines:
 	 template _ toolkit:
	 encoding: ‘utf8’
	 start _ tag: ‘[%’
	 end _ tag: ‘%]’

Also, note that we are not worrying with the images
file sizes. Our gallery index is loading all images at full

1	 The configuration file uses YAML syntax that is sensitive to
indentation. Take care when editing it.

Listing 4:
get ‘/gallery’ => {
 chdir catfile(setting(‘public’), ‘/gallery’);

 my @galleries;
 my @photos;
 for my $file (glob(“*”)) {
	 if (-d $file) {
 push @galleries, $file
 } else {
 push @photos, $file
 }
 }

 template ‘gallery’, { galleries => \@galleries,
 photos => \@photos};
};

Listing 5:
get qr{/gallery/(.*)} => sub {
	 my ($path) = splat;
	 my $systempath = catfile(setting(‘public’), ‘gallery’, $path);
	 chdir $systempath;
	 my (@galleries, @photos);
	 for my $file (glob(“*”)) {
 	if (-d $file) {
 push @galleries, $file
 	} else {
 	 push @photos, $file
 	}
	 }
	 template ‘gallery’, { current => $path,
 galleries => \@galleries,
 photos => \@photos }; };

Dancing Polonaise With Perl

5902/2012	 en.sdjournal.org

resolution, and asking the browser to present them as
a thumbnail. This is not efficient, neither for the web
server nor regarding traffic. A real solution should cre-
ate thumbnails for each uploaded image.

Presenting an image and comments
To illustrate the use of a database management sys-

tem (so, the M in the MVC terminology), we will use a
SQLite database to store picture comments. For simplic-
ity we will just store comments and dates. In a real solu-
tion you should take care of users and authentication.

To create the database we will use the command line
sqlite tool. In the command line write:

 $ sqlite3 comments.sqlite ‘CREATE TABLE
comments (path, comment,

 timestamp datetime
DEFAULT current _ timestamp)’

This will create the comments.sqlite database with
three fields, and with a timestamp whose value will
default to the current time. Again, be sure to set per-
missions right if you are deploying this application. The
best solution might be to create a db folder in the root

of your application and put the database inside it. This
way you can set write permissions to the folder, so that
the web server is able to create temporary files.

The second step is to configure the
Dancer::Plugin::Database module. It makes access to the
database easier from within the Dancer application. In
the config.yml file add a plugins section with:

 plugins:
 Database:
 driver: ‘SQLite’
 database: ‘db/comments.sqlite’

This plugin supports any database management
system that the DBI module supports, that is, virtually,
any system in the globe. To use this plugin we need to
import it in lib/polonaise.pm:

use Dancer::Plugin::Database;

The route to handle each picture view and com-
ments will answer two HTTP verbs, both GET (when the
user just wants to see a picture) and POST (when the
user wants to comment). For that we use the any verb,
and list the verbs we are supporting: (Listing 7).

Listing 6:
<h3>Photo Gallery Index</h3>
[% IF galleries.size %]
<h2>Galleries</h2>

[% FOREACH gal IN galleries %]
	 [% gal %]
[% END %]

[% END %]

[% IF photos.size %]
<h2>Photos</h2>
[% FOREACH photo IN photos %]

[% END %]

[% END %]

Listing 7:
any [‘get’,’post’], ‘/view/**/*’ => sub {
	 my ($path, $pic) = splat;
	 my $fullpath = catfile(‘/gallery’, @$path, $pic);

	 if (param(‘comment’)) {
 	 database->quick _ insert(‘comments’, { path => $fullpath,
 	 comment => param(‘comment’)});
	 }

	 my @comments = database->quick _ select(‘comments’,
 	 { path => $fullpath },
 	 { order _ by => ‘timestamp’});

	 template ‘image’, { comments => \@comments,
 name => $pic,
 	 fullpath => $fullpath};
 };

PROGRAMMING IN PEARL LANGUAGE

60 02/2012	 en.sdjournal.org

The relevant portion of this code is the if state-
ment that checks if there is a comment to be added
to the database or not. It uses the Dancer param
method that checks for a form parameter (the form
is shown below, in the template file). If that param-
eter has a value, we use the quick_insert method in
the database. Note that we do not need to open or
specify it. The plugin does all that for us. After the
conditional, we retrieve the current list of comments
stored in the database (again, using a plugin meth-
od) and send them to the template image. This tem-
plate should be written in views/image.tt with the
following content: (Listing 8).

Conclusion:
Dancer is a flexible and easy to use framework to

develop web applications. The sample application
we developed in this article illustrates some of Danc-
er’s features. There are some tutorials of Dancer on
the web (and one is shipped with Dancer itself), to-
gether with lots of presentations and, of course, you
can always refer to the modules manual pages, the
Dancer mailing list or even chat on IRC with other
Dancer developers and users.

If you need some kind of behavior that you think is
common - others will already have needed it - search
for a plugin. There are dozens of plugins available for
Dancer, from authentication, databases, cookies, ses-
sions, thumbnails, etc. Refer to the Task::Dancer mod-
ule for a mostly up-to-date list of available Dancer
plugins. Plugins use the Dancer::Plugin:: namespace
on CPAN.

During this article we used the Dancer standalone
web server, answering locally at port 3000. As you
might guess, that is not a robust solution, but a great
way to develop. When you have your application
ready to go into production you should use a robust
web server. As Dancer uses Plack (PSGI), any mod-
ern web server will be able to run Dancer efficiently
(check Starman, Apache, nginx, fast-cgi and others).
You can even upload your Dancer code to the cloud
and run on an application stack like DotCloud.

We hope this brief glimpse of the Dancer framework
motivates you to take a more complete look in to how
easy and fun web application development in Perl can
be. Happy Dancing!

Note: The code used in this article is available at
GitHub: https://github.com/ambs/Polonaise

AUTHORS’ BIOGRAPHIES:

Alberto Simões has used Perl for more than ten
years. He is the maintainer of more than a dozen Perl
modules and one of the five Dancer core develop-
ers. He works as a computer science teacher, and
has a PhD in Natural Language Processing.

Nuno Carvalho is currently president of the Por-
tuguese Association for Perl Programmers. He has
been using Perl for years, and is currently doing a
PhD in computer science.

Listing 8:

<h3>[% name %]</h3>

<hr/><hr/>

 [% IF comments.size %]

 Comments:

 [% FOREACH c IN comments %]

 <p>[% c.timestamp %]
[% c.comment %]</p>

 [% END %]

 [% END %]

 <form method=”post”>

 Insert new comment:

 <textarea rows=”2” cols=”80” name=”comment”></textarea>

 <input type=”submit” value=” Comment! “>

 </form>

https://github.com/ambs/Polonaise

http://worldoftanks.com/

SOFTWARE DEVELOPMENT

62 02/2012	 en.sdjournal.org

Mobile devices are everywhere
Over a decade ago, while attending a Microsoft

Professional Developers Conference, we were shown
a video on the coming mobile future. The video show-
cased futuristic-looking, Windows-powered phones
being used for tasks such as locating the closest
doctor’s office. In an era where the Palm VII (http://
en.wikipedia.org/wiki/Palm_VII) was the closest thing
to a wireless smartphone, the video showcased an im-
pressive future.

Fast forward to 2012:There is no mistake that we are
living this future. Smartphones and other mobile devic-
es such as tablets are everywhere. They are available at
multiple price points and are increasingly affordable. In
fact, for many in the developing world, their only com-
puter is the powerful smartphone they own.

Mobile application development: growth
predictions from Gartner

Gartner predicts that by 2016, at least 50 percent of
enterprise e-mail users will rely primarily on a browser,
tablet, or mobile client instead of a desktop client.
Given the increase in the adoption of mobile devices, it
is also expected that software application development
targeting these devices will also dramatically increase in
the coming years. Again, Gartner predicts that by 2015
mobile application development projects targeting
smartphones and tablets will outnumber native PC
projects by a ratio of 4 to 1. Gartner further says that

smartphones and tablets will represent more than 90
percent of the new net growth in device adoption in
the coming four years.

The Apple app store now boasts over 500,000 apps.
Android has close to the same number and the Windows
Phone marketplace, a much more recent contender, re-
cently crossed 50,000 and is growing at a fast pace.

Line of business mobile applications: the
challenge posed by fragmentation

Given this rather exciting backdrop, we can be cer-
tain that most line-of-business applications will be
made available on mobile platforms in the immediate
future. As with any other opportunity, mobile applica-
tion development with all its promises comes with its
own set of challenges.

One of the primary challenges is the issue of frag-
mentation. Estimates from the third quarter of 2011
indicated that the mobile operating system market is
very fragmented. The variants of Android accounted
for around 50% of devices sold during this quarter.
Symbian and iOS accounted for about 17% each. Re-
search in Motion (RIM/Blackberry) accounted for about
11% and the Windows Phone platform for around 2%.

Developing a line-of-business application that will
function on all these devices involves working with the
following vastly different technologies: (Table 1).

Native Mobile Apps with
ASP.NET MVC

Table 1

http://en.wikipedia.org/wiki/Palm_VII
http://en.wikipedia.org/wiki/Palm_VII
http://bit.ly/uIkqKR

Native Mobile Apps with ASP.NET MVC

6302/2012	 en.sdjournal.org

The platforms, languages, and tools involved are
substantially different, and the effort involved in pro-
ducing a solution that will work on every platform is
substantial.

It is also worth noting that there is substantial frag-
mentation even within some of the platforms. This is
especially true with the currently dominant Android
platform. Given that Android is open and vendors are
free to make changes. There are literally hundreds of
Android-based devices available on the market today.
Many of them work only with specific levels of the An-
droid API. Some of them have issues with applications
that target certain features even within a supported
API level. In summary, there is no shortage of fragmen-
tation in the mobile market. This makes the implemen-
tation of a native solution on multiple platforms quite
daunting.

Mobile Web applications: the solution for
fragmentation?

Web applications are an alternative to native appli-
cations. All the major mobile platforms offer very ca-
pable browsers. In addition, with the exception of the
Windows Phone browser, most other platform brows-
ers are based on the open source WebKit browser
platform that powers the desktop versions of Apple
Safari and Google Chrome. There is excellent support
for JavaScript on these browser platforms; jQuery is
fully supported on most current mobile devices. Also,
increasing compliance with HTML 5 and related web
standards is making the browsers even more attractive
as a development platform. It is possible to build very
functional Web sites that work very well on mobile de-
vices with technology available today.

Mobile web applications: additional
considerations

Building a mobile Web site does not offer the same
experience as a native application. Users on specific
hardware platforms are accustomed to the enhanced
experience offered by native applications. Such appli-
cations are installed natively and are always available
on the launcher surface of the device. Native applica-
tions also obey user interface contracts on the device.
For instance, on Android the left menu button usually
displays a context menu. Users expect this. Web appli-
cations can be installed as shortcuts on the launcher
surface for most devices, but they do not obey specific
user-interface expectations on the deployed device.
Another disadvantage web applications have is that
they have no native access to hardware beyond what
is exposed by HTML and related web standards. For in-
stance, there is no direct access to contacts, images, or
the camera on the device. For many applications, ac-
cess to key elements of device hardware is important.

Hybrid applications: the best of Web and
native applications

Hybrid applications are completely native applica-
tions that embed a platform-specific Web browser
control. All major mobile platforms including Android,
iOS, Windows Phone 7, and Blackberry/RIM support
embedding web browser controls as implemented on
their platform. Since the wrapper is completely native,
users are not often even aware they are interacting with
a Web application. It is quite possible for the native ap-
plication to provide a seamless navigation experience.

It is also possible for Web pages displayed in the
browser to interact with the native hardware through
a JavaScript bridge, a form of which is available on ev-
ery major platform. Using such callbacks to the native
platform makes it possible to access contacts, capture
or select images, and play media. In fact, anything you
can accomplish through native code can be accom-
plished through the bridge. The bridge code will of
course have to be re-written for every target platform,
but this is usually a small fraction of your total applica-
tion code.

Also, several JavaScript bridge frameworks exist; the
most popular is the open source PhoneGap platform,
which provides a substantial part of this plumbing. We
will not be using any frameworks for this purpose. We
will instead illustrate the concept with a simple Android
wrapper.

ASP.NET MVC: an elegant framework for
your backend

Hybrid applications can of course be built with any
Web backend, but we firmly believe that ASP.NET MVC
is ideally suited for the implementation of hybrid ap-
plications. Below are some aspects that make ASP.NET
MVC a good choice for such applications.

Clear separation of responsibilities
The clear separation of responsibilities afforded by

the MVC environment makes it possible to have very
precise control over HTML output. This makes it very
easy to generate mobile-friendly HTML. There is no
built-in, self-contained control model that makes it
hard to control the markup that is produced.

Sharing most code with desktop or tablet
Web clients

If you have an existing ASP.NET MVC Web application
that targets desktop browsers, much of the code can
be shared with your mobile application. The controller
and model code can be shared almost as is. Only the
view needs to be changed. It is not difficult to specify
a custom view for mobile clients even with the current
version of ASP.NET MVC, but the next version of the ASP.
NET MVC makes it even simpler. For additional details
on mobile-friendly features in the upcoming version of

http://phonegap.com/

SOFTWARE DEVELOPMENT

64 02/2012	 en.sdjournal.org

ASP.NET MVC, please refer to http://www.asp.net/mvc/
tutorials/mvc-4/aspnet-mvc-4-mobile-features.

Minimal friction with underlying web
development model

ASP.NET MVC does not build several layers of ab-
straction over stateless Web applications. Instead it of-
fers a very simple model that works in alignment with
the underlying platform. This makes it very easy to
make AJAX calls or use jQuery on the client. There is
no complex abstraction such as ASP.NET Web Forms’
ViewState to worry about.

In addition to the above, it is also worth pointing out
that the business and database layers that already ex-
ist in your current .NET applications can be effectively
reused with ASP.NET MVC applications. ASP.NET MVC is
completely agnostic about the business and database
layers and can work effectively with any system that is
currently in place.

Sample hybrid application
We will now walk through a very simple sample that

will illustrate the development of a hybrid applica-
tion end-to-end using the ASP.NET MVC platform. The
sample displays information on students attending a
fictional university named Contoso University. There are
a couple of general information links as well as access to
a student directory where students can be looked up by
name. The sample does not implement any security or
error handling in order to keep the code clear. There is
no complex code since the objective of the sample is not
to showcase the power of the ASP.NET MVC platform,
but to showcase its suitability as a backend platform for
the development of hybrid, native mobile applications.

The complete code for this sample is available at bit.
ly/mvc-native-mobile-apps.

Prerequisites to work with the sample code:

•	 ASP.NET MVC 3 with Visual Studio 2010 (any version
including the Express Edition).

•	 Functional installation of the Android SDK and the
Android Development Tools plugin for Eclipse.

Detailed instructions and requirements are
available here: http://developer.android.
com/sdk/requirements.html

•	 jQuery and jQuery mobile. Local copy is not required
since the sample code will simply reference the
jQuery CDN.

The ASP.NET MVC backend
In the sample code, the provided _Layout.cshtml

contains script references to the jQuery and jQuery
mobile libraries. They are not required to build an
ASP.NET MVC mobile application, but they do han-
dle a lot of the grunt work. We use jQuery mobile in
our sample since our purpose is not to illustrate the
nuances of formatting content on mobile devices
(Listing 1).

Most mobile web clients assume that a Web page is
sized at about 900 pixels and will automatically scale
to display the entire page on the device. With a mo-
bile site that is optimized for a smaller device, we can
provide a hint to the device that it should not scale
but should instead use the width of the device. This is
accomplished via the use of the viewport meta tag as
shown below (Listing 2).

IThe default index action method on the home
controller is mapped to the following view markup
(Listing 3).

Listing 3

Listing 2

Listing 1

http://www.asp.net/mvc/tutorials/mvc-4/aspnet-mvc-4-mobile-features
http://www.asp.net/mvc/tutorials/mvc-4/aspnet-mvc-4-mobile-features
http://developer.android.com/sdk/requirements.html
http://developer.android.com/sdk/requirements.html

Native Mobile Apps with ASP.NET MVC

6502/2012	 en.sdjournal.org

We have a simple unordered list with three action
links. We specify that the list should be automatically
formatted as a list view by the jQuery mobile runtime
through the use of the “data-role=listview” attribute
setting. This is all that is required to display the follow-
ing initial UI on a mobile device (Figure 1).

The jQuery mobile runtime takes care of formatting
it as a list view. As mentioned earlier, jQuery mobile is
certainly not needed, and indeed it is fairly simple to
accomplish this task without the use of jQuery mobile.
jQuery mobile handles this in a seamless manner and
works on a large number of mobile devices. You can
pick the formatting and scripting approach that suits
your needs best.

The sample contains views that are displayed when
the About Us and Contact Us options are invoked.
These screens are straightforward and do not require
any further explanation.

The Student Directory link displays a page with stu-
dent names grouped by starting letter. The page also
displays the number of students listed under each let-
ter (Figure 2).

Clicking on any option displays a list of students, as
seen below (Figure 3).

The student directory views are also fairly simple.
They iterate through and display data in a list. The view
that displays student details is shown below (Listing 4).

Figure 1: Initial screen Figure 2: Student directory initial
screen

Figure 3: Student directory

Listing 4

SOFTWARE DEVELOPMENT

66 02/2012	 en.sdjournal.org

It is a good idea to run the ASP.NET MVC backend in
a desktop browser and test it out before proceeding to
review the Android wrapper that we will work with next.

You can also directly test on a mobile browser pro-
vided the test site is accessible from your test device. If
both the development PC and your test device are on
the same network, it is possible to make setting chang-
es to the ASP.NET development browser or IIS Express
to allow access to the Web application from your test
device. Such access is blocked by default.

An easier, alternate approach is to use a proxy, which
simply redirects traffic on an external port to the inter-
nal server. This is the approach we often use. The proxy
that we use is available for download from https://
github.com/jocull/SharpProxy. For further details visit
http://www.codefromjames.com/wordpress/?p=97.

Android wrapper
The code for the Android wrapper that hosts the

Web application inside a native Android application is
reproduced below (Listing 5).

The code is quite simple to follow.

1.	WebView is the Android equivalent of the Web-
Browser control. It is a wrapper around the default
WebKit-based Android browser.

2.	We obtain access to an instance of the Android We-
bView control (defined in an XML layout file and in-
stantiated by the Android runtime at execution).

3.	We enable the use of JavaScript on this WebView
instance since JavaScript is disabled by default with
the WebView control.

4.	We then make a few adjustments to the display of
the scrollbar–basically turning it off to mimic the
look and feel of a native application.

5.	We then load the actual Web application using a call to
the loadUrl API on the WebView instance. your-web-link
should be changed to point to your Web application.

6.	The last section of the code handles the invocation of
the hardware back button and causes the embedded
WebView to navigate to the previous page.

Listing 5

https://github.com/jocull/SharpProxy
https://github.com/jocull/SharpProxy
http://www.codefromjames.com/wordpress/?p=97

Native Mobile Apps with ASP.NET MVC

6702/2012	 en.sdjournal.org

As you can see this code is not tied to the Web ap-
plication in any direct manner and will not change sub-
stantially from application to application. You will only
need to add additional code when you require access
to specific hardware functionality on the device. We
do not delve deeper into this topic here but if you are
interested in investigating this further, please look up
information on the addJavascriptInterface method of
the WebView.

For simplicity, we have described just the Android
wrapper. Similar wrappers and extension mechanisms
exist on all other major mobile platforms (Figure 4).

Conclusion
Hybrid applications are a very promising solution

worth looking into for any line-of-business mobile ap-
plication. They are not suited for scenarios where ex-
tensive access to native hardware is required (such as
with games) but will work very well in most other sce-
narios. Any solution implemented with a Web backend
is also more likely to be future-proof. The HTML stan-
dard has evolved slowly over the years and is unlikely
to dramatically change as proprietary solutions often
tend to do. It offers a stable base on which applications
can be built with the certainty that they will continue to
work for the foreseeable future. Mobile platform ven-
dors are putting an extraordinary amount of effort into
the implementation of HTML 5 and related standards.
This will also serve to make Web applications more
powerful and able to accomplish a substantial subset
of what is possible with native applications.

You can leverage your existing .NET Web develop-
ment skills and produce powerful 100% native solu-
tions that work on a broad cross-section of devices. At
Syncfusion, we are excited by the immense potential
offered by hybrid applications. We currently offer a
wide set of mobile controls for use under the ASP.NET
MVC platform and have many more exciting offerings
on the way. We hope you too are excited by the poten-
tial offered by hybrid mobile applications.

Figure 4: Contact Us page displayed on Android
4.0 Emulator inside a native application shell

ABOUT SYNCFUSION
Syncfusion, the enterprise technology partner of choice for Windows development, delivers a range
of .NET components and controls coupled with a service-oriented approach throughout the entire
application lifecycle. Known for its extremely fast grid control, and breaking new ground in ASP.NET MVC
and mobile development, Syncfusion has established itself as the trusted partner for mission-critical
applications. With releases every quarter, 24-hour support, and flexible licensing, Syncfusion meets the
changing needs of enterprises across the globe. Founded in 2001 in Research Triangle Park, North Carolina,
Syncfusion has more than 7,000 customers including Fortune 100 and global financial companies.

ABOUT THE AUTHOR

Daniel Jebaraj is Vice
President of Product
Development at
Syncfusion, a leading
provider of components

for Windows development. In addition to
overseeing product development, he actively
engage with enterprise customers, which
include large financial institutions, Fortune
100 companies and global IT consultancies.
Before joining Syncfusion in 2001, he managed
development teams at Rogue Wave Software.

http://www.syncfusion.com

SOFTWARE DEVELOPMENT

68 02/2012	 en.sdjournal.org

For programmers doing code maintenance is sim-
ply inevitable. Whenever we start with a blank
project, or perhaps a new class, things remain

fresh for maybe the first 15 minutes of the job. Then
it gets all about fixing bugs, extending existing func-
tionality, extracting repetitive parts into methods, etc.
Knowing that all programming is maintenance, we
can avoid some pitfalls early on, and keep technical
debt at bay.

Perhaps the greatest reason of not caring for writ-
ing good, readable code is because it’s enough for pro-
gram to work when it’s understood only by the com-
puter. As long as we assume that our job is done when
things just work, then why would we waste our time
correcting perfectly fine program, right? Sadly, things
never look this way and sooner or later you’ll be forced
to come back to your creation and tweak it.

Perhaps users will detect a new bug, or client will
request a new functionality. Either way you’ll find your-
self knee deep in old code. When it happens you’ll be
glad you took care of writing something readable. Oth-
erwise… I’ve seen monstrous “if” statements with nest-
ed “if” statements, taking care of data validation, error
handling, and delivering functionality – all at once. Ex-
tending such code is mentally straining and absolutely
unrewarding. Come along with me, and I’ll show you
some simple tricks, to make introducing new function-
ality whole lot easier. It’ll let you be more agile too!

Names
Let’s start with names. It’s the most fundamental

and essential topic, as writing code is pretty much all
about giving names to variables, classes, and methods.
Developing software though, is usually more about

reading code, than writing it. And while analyzing an
algorithm we can keep only a limited amount of infor-
mation in our minds. Therefore it is vital to put as little
strain on reader’s mind as possible. Let’s consider fol-
lowing code: (Listing 1).

Clean coding
If you have ever read code written by another person, you were probably
having difficult time figuring out what was the author’s intention and
what is the actual workflow of the algorithm.
Therefore it is common practice to let the author fix bugs in his own code
should problems arise. Nevertheless, even your own code tends to become
more difficult to understand as the time passes.

Listing 1: Obfuscated code (C#)

 public class N
 {
 N a, b;
 public int c;

 public N(int c)
 {
 this.c = c;
 }

 public void ins(int d)
 {
 if (d < c)
 {
 if (a == null)
 a = new N(d);
 else
 a.ins(d);
 }
 else
 {
 if (b == null)
 b = new N(d);
 else
 b.ins(d);
 }
 }
 }

Clean coding

6902/2012	 en.sdjournal.org

It is a rather simple algorithm, part of elementary
Data Structures course in Computer Science curricu-
lum. Average developer can be expected to figure out
what it does, especially after focusing on it for some
time. Pen and paper may be used to iterate the code
on a piece of paper (Listing 2).

When we keep names of our variables and functions
expressive, they convey enough meaning to be read
und understood easily. Developing software is already
complex enough, so it’s in developers interest, to sim-
plify things whenever possible. As a rule of thumb it’s
good practice to name variables as nouns and func-
tions as verbs to underline the distinction between
passive and active components of the class.

Once upon a time, there was an age of linkers
that could recognize only several letters long names,
screens were narrow and there were no IDEs to provide
information about access scope, type of variable and
types returned by functions. Anyone who has had op-
portunity to work with old C / C++ code and APIs can
tell you about horrors of working with cryptic function
and argument names. Only through thorough study of
manual pages could one achieve state of mind when
abbreviations encoded within names prove useful as
reminders of underlying data structures.

Nowadays we’ve got everything it takes to
give our variables and functions names which are

pronounceable and provide no redundant informa-
tion. It is important to be able to actually talk about
code, since code reviews and associated discussion is
core factor in delivering quality code. Standard abbre-
viations like msg instead of message or iter for iterator
are fine. Those are standard and widely known. On the
other hand though setsockopt() is pronounceable, but
is difficult to guess that it is supposed to stand for ‘set
options for a socket’. Even worse function like fcntl()
leaves us completely helpless, as we are not even able
to pronounce it while asking for help.

Another important thing to keep in mind about
names is that they should be searchable. A friend of
mine – a brilliant developer – has a long history of
working solitary on his own projects. During the years
he developed a habit of creating his own class for ar-
rays, which he calls simply ‘A’. Array of arrays is ‘AA’.
‘AAA’ would be three dimensional array and so on. As
a lone wolf developer he has no problem reading and
understanding his cryptic code, but any attempts of
searching the code base for a single letter representing
a class are in vain – unnecessarily raising difficulty of
maintaining the system.

Last but not least, while naming parts of the system,
developers should stick to established conventions and
programmatic common sense. Once during a project I
was working on, colleague and I decided we needed
to have a system user, who would be assigned some

Listing 2: Unobfuscated code (C#)

 public class BinaryTreeNode
 {
 BinaryTreeNode lesserNode, greaterNode;
 public int nodeValue;

 public BinaryTreeNode(int value)
 {
 this.nodeValue = value;
 }

 public void insertNode(int newValue)
 {
 if (newValue < nodeValue)
 {
 if (lesserNode == null)
 lesserNode = new BinaryTreeNode(newValue);
 else
 lesserNode.insertNode(newValue);
 }
 else
 {
 if (greaterNode == null)
 greaterNode = new BinaryTreeNode(newValue);
 else
 greaterNode.insertNode(newValue);
 }
 }
 }

SOFTWARE DEVELOPMENT

70 02/2012	 en.sdjournal.org

resources. Those resources would be identified with
a token, representing human user, to whom the re-
sources would be given back later. We thought it would
be witty to call the system user Charon and the token
Obol. In Greek mythology Charon was a ferryman, who
helped souls of the deceased reach the afterlife. Obol
was a coin ancient Greeks put in the mouth of their
dead, so they could pay Charon for his service and thus
be granted place in Hades. Introducing this bit of trivia
into the system surely made for a great tale, but it re-
quired everyone on the team to ask us for explanation.
Very quickly had we decided to drop those names in
favor of “unassignedResources” and “ownerToken”.

Functions
Functions are primarily a way of extracting and reus-

ing repetitive code. This principle becomes very quickly
obvious to any programmer. But functions are capable
of serving one more purpose. They are perfectly suited
to separate layers of abstraction.

 Let’s have a look at listing 2 once again. Algorithm
should be familiar hence effort required to understand
and tweak it is relatively little. Variable names are clear
and thus it seems things should be alright. But there is
a way to improve things even further (Listing 3).

Just a glimpse at listing 3 and we know what’s going
on. There’s even no need to analyze statements within

“if” clause, as function name says all that is necessary. In-
ner functions “insertAsGreater()” and “insertAsLesser()”
give us idea of what’s going on in the algorithm, with-
out forcing us to analyze, understand and keep in mind,
what exactly happens there. Thanks to proper use of
functions, we get more general view of the logic, and
less details. This means what we see is more abstract.

Having short, well named and abstract functions lets
us write code which is agnostic of underlying platform.
Calls to framework APIs and standard libraries become
part of lower lever, more detailed functions, thus ren-
dering parts of our code universal. Due to this even de-
velopers new to the project and technology stack will
have easier time understanding workflow of the busi-
ness logic.

Well written code can be similar to an article in a
newspaper. As we read it from top to bottom we get
to learn more details about covered topic. Early para-
graphs introduce only general ideas behind the events.
Usually by the end of the article readers learn about
some more detailed background info, read quotes from
involved parties and so on. Thus reader may abandon
the article before making it to the end and still feel like
they have learnt something new. That’s right the effect
we want to achieve in our code – someone examining
our classes shouldn’t have to spend a lot of time to just
get the general feeling what is going on. More details
should there for him but encapsulated in functions.

Listing 3: Code with descriptive functions used to hide implementation details (C#)

 public void insertNode(int newValue)
 {
 if (isLesser(newValue))
 insertAsLesser(newValue);
 else
 insertAsGreater(newValue);
 }

 private bool isLesser(int newValue)
 {
 return newValue < nodeValue;
 }

 private void insertAsLesser(int newValue)
 {
 if (lesserNode == null)
 lesserNode = new BinaryTreeNode(newValue);
 else
 lesserNode.insertNode(newValue);
 }

 private void insertAsGreater(int newValue)
 {
 if (greaterNode == null)
 greaterNode = new BinaryTreeNode(newValue);
 else
 greaterNode.insertNode(newValue);
 }

Clean coding

7102/2012	 en.sdjournal.org

I hope it’s a bit more clear why should we use func-
tions to make our code cleaner. Now I’d like talk about
achieving this goal.

It’s important to have short functions, because this
way they convey information in smaller chunks and it’s
easy to focus on them. Ideally they should be as short
as possible and no longer than can be fit on a computer
screen. Reading and analyzing code should not require
constant scrolling up and down.

Functions should focus only on one thing. Clean
coding is not about cutting lines of code at random
and putting them together in functions. Code should
be logically grouped. To achieve this, programmers
should give their functions descriptive names, so their
readers can safely assume they know what functions
do without reading actual code. Sometimes it will
make signatures of our methods long, but our goal is
to make reading code more like reading a book than
mathematical equations – those can be very short, but
very difficult. On the other hand though, long name
may suggest that a function has several responsibilities
and should be divided into several smaller functions.

Function arguments are yet another potential pitfall. In
noble desire to reuse most quirky parts of code we may
build a complex function, which operates on a lot of data.
Such function may require a lot of arguments to work
properly. Function like these are difficult to use. Client
programmers have to remember type and order of the ar-
guments, perhaps constantly looking up the documenta-
tion. IDEs can help there showing appropriate signature,
but still it may be difficult to grasp what exactly is going
on within the code. Understanding of such program re-
quires thorough analysis of the said function’s body.

One could say writing one big function with a lot of ar-
guments helps suggest that the function carries out atom-
ic operation, which requires all the data and should not be
interrupted. But perhaps we could take another route. One
possible approach is to encapsulate the data in an object.
If we were working on a program dealing with geometric
points we could have a function signature similar to “foo(x,
y)”. We can consider changing it to “foo(point)”, which puts
more emphasize on the logic of the program.

Another possible approach is to split said function
into several smaller ones which take only one argu-
ment. Value returned by first function could be used
immediately by another one. Thus, reader can see what
is the use of each variable and how the process flows.
Since he cannot use the latter function without obtain-
ing result from the first one, he won’t be tempted to
invoke them in wrong order.

Function’s name and the argument it takes suggest
that the function is working only on the passed chunk
of data. Method “calculatePay(employee)” can be ex-
pected to read data from the passed object and return
a value. It may be surprising if it affects actual data
within employee object, or even worse – somewhere
else in the program. Being able to safely make assump-
tions about scope of a function can greatly simplify
programmers work as he does not have to be paranoid
about consequences of calling a method – he clearly
knows what his input is and what should be the out-
put. If anything else is affected along the way we say
the function has “side effects”. Such behavior should be
avoided where possible.

I would like to say one last thing concerning the
functions before I move on. It is good practice to stick
to query-command separation. Your methods should
either “ask” the object about its state, or “change” it. A
method should never do both at once. Otherwise we
may find ourselves in a strange situation, when ask-
ing the same question changes the answer, i.e. calling
twice the same “query” function yields different results.

Comments
One of the more controversial parts of writing main-

tainable and easy to understand code is the art of com-
menting. Comments are supposed to make things
easier for the reader and provide information neces-
sary for understanding the algorithm or other design
decisions. I prefer to avoid comments where possible
and write code which documents itself. Let’s consider
following snippet on listing 4.

Versus that on listing 5:

Listing 4: Poor commenting (C#)

double t1, t2, t3; // minTemperature, avgTemperature, maxTemperature

Listing 5: Code not requiring commenting (C#)

 double minTemperature;

 double avgTemperature;

 double maxTemperature;

SOFTWARE DEVELOPMENT

72 02/2012	 en.sdjournal.org

Or perhaps one of the brightest examples of redun-
dant comments, not uncommon in code bases around
the world would be: (Listing 6).

Comments like these do nothing to contribute to-
wards better understanding of the problem, yet they
introduce complexity of switching contexts between
programming and natural language. Any programmer
working with the code will have to balance focus be-
tween these two. Human brain can focus only a limited
amount of items and once, and once read the com-
ments will be mentally blocked by the developer – ig-
nored and thus rather obstacle than help.

Wealth of information can be conveyed using well
named functions in place of littering the code with
comments. Let’s consider code from listing 7. It is real
life code from an open source simulation framework
(Listing 7).

I believe author’s intention was to give his readers
best idea of what happens behind the scenes. It is very

noble pursuit, yet I couldn’t start working with the
code, until I did some initial refactoring. Resulting code
is shown on Listing 8.

This code is much more concise and clearly con-
veys its meaning. It takes just a glimpse to see what’s
going on, and additional details are available for curi-
ous readers upon request – in bodies of correspond-
ing methods. “If” statements always introduce a lot
of complexity and several levels of abstraction at
once. It’s important to “hide” those abstractions in
well named functions. It is perhaps best to hide each
part of the statement, namely to encapsulate in sepa-
rate functions each of the resulting branches and the
evaluated expression as well. The code from listing
10 could be hidden in one function named simply
“serveCustomerIfSomeoneIsWaiting()”.

Should we leave if statements in their original form
someone will have to later analyze, understand and
keep in mind logic behind it all. Comments bloat the
code even further forcing us to balance between

Listing 6: Code with redundant comments (C#)

 double minTemperature; // the minimal temperature
 double avgTemperature; // the average temperature
 double maxTemperature; // the maximum temperature

Listing 7: original code (Java)

//check if there is someone waiting
if (myModel.truckQueue.isEmpty()) {
// NO, there is no one waiting
// insert yourself into the idle VC queue
myModel.idleVCQueue.insert(this);
// and wait for things to happen
passivate();
}
else {
// YES, there is a customer (truck) waiting

// ...
Truck nextTruck = myModel.truckQueue.first();
// remove the truck from the queue
myModel.truckQueue.remove(nextTruck);

// ...
hold(new SimTime(myModel.getServiceTime()));
// ...
nextTruck.activate(new SimTime(0.0));
// ...
}

Listing 8: Refactored code (Java)

if (isSomeoneWaiting()) {
serveTheCustomer();
} else {
becomeIdle();
}

Clean coding

7302/2012	 en.sdjournal.org

additional languages and contexts. Formal language
of the source code is always strict, whereas natural lan-
guage requires us to perform interpretation and analy-
sis on a whole new level of abstraction.

Error handling & exceptions
Data validation within the code can be devastating

for its cleanliness as it puts in one place several differ-
ent responsibilities. Art of writing clean code is all about
learning how to hide unnecessary details from the
reader. Inconvenience of using error codes is twofold.
Firstly, error codes pose a problem since they force us
to handle problems immediately where they arise, thus
interweaving high level business logic with low level
problems like perhaps malformed strings. Secondly, er-
ror codes force us to design functions which return val-
ues even though there is no reason to do so. Function
called “setDatabaseFields()” is a command and thus not
a question, we could assume it returns void. Calling the

method “trySettingDatabaseFields()” doesn’t help ei-
ther because we only know that “something is wrong”
with the function, but have no details until we examine
the actual code, which may be difficult.

In listing 9 we can see example of a program, which
uses error codes to validate its data on the spot. I propose
a different approach, using exceptions as in Listing 10.

Approach like this enables software developers to
produce code which is separated in two distinct areas –
within “try” and catch “blocks” respectively. Within “try”
we have the positive scenario presented and we can
forget about nuances of error handling. This is the way
we want the workflow to be, it is our positive scenario.
“Catch” block handles the errors and is a perfect place
to deal with low level nuances of coding, like difficul-
ties with network connection, missing files, malformed
date strings, missing required form fields. Those are our
negative scenarios.

Listing 9: Validating data using error codes (C#)
 public string saveOrder(OrderForm form)
 {
 ErrorCode result;

 result = this.trySettingDate(form.RawDate);
 if (result == ErrorCode.InvalidDate)
 return “There is no such date.”;
 else if (result == ErrorCode.InvalidDateFormat)
 return “Date should be in format YYYY-MM-DD.”;
 else if (result == ErrorCode.EmptyField)
 return “Date is required.”;

 result = this.trySettingPrice(form.RawPrice);
 if (result == ErrorCode.InvalidPriceFormat)
 return “Price has to be in format x.xx. It has to be non-zero value.”;
 else if (result == ErrorCode.EmptyField)
 return “Price is required.”;

 result = this.trySettingName(form.Name);
 if (result == ErrorCode.EmptyField)
 return “Name is required.”;

 return null;
 }

Listing 10: Exceptions separating business logic from error handling (C#)
 public void saveOrder(OrderForm form)
 {
 try
 {
 validateAndSetDate(form.RawDate);
 validateAndSetPrice(form.RawPrice);
 validateAndSetName(form.Name);
 }
 catch (Exception e)
 {
 throw e;
 }
 }

SOFTWARE DEVELOPMENT

74 02/2012	 en.sdjournal.org

Classes
Subject of object oriented analysis and design is a

complex one and way beyond scope of this article. There
are numerous principles of laying out classes within the
application of which I would like to tackle just two.

Single Responsibility Principle (SRP) says that there
should be only one reason to modify each class. It is crite-
rion based more on logical distinction than on anything
else. If we have employee class which exposes two
methods “caluclatePay()” and “printMonthlyReport()”
then we have mixed together two different aspects –
pay calculating rules and presentation template. Should
ever any of those two change, we’ll have to reach back
to our original class. Of course it’s difficult to anticipate
the change and there is no point producing dozens of
single method classes. Nevertheless working on a proj-
ect we should have some intuition about requirements
which may be most prone to change.

Open/Closed Principle (ORP) states that our classes
should be open to extension and closed to change.
Let’s assume we need to add another class, which does
similar things as one we already have. Perhaps “Report-
Printer” class needs now not only to print plain text
reports, but also has to support some rich text format-
ting. We may extract shared structure and behavior
into one abstract class. That abstract class should be
designed with goal of being least prone to change – it
should keep as little detailed information as possible
and may be in no way dependent on derived classes. It
is the “closed” part of our object system.

Open part of the principle lies in the derived classes.
They provide behavior unique to each part of the prob-
lem. Should our system require introducing third way of
printing reports we’ll be able to simply extend existing
abstract class. If the client code is written to rely on work-
ing with abstract classes there will be little work required
to adapt it to the new functionality. Sometimes derived
classes may be perceived as simple configuration of
more general behavior expressed in the base class.

Test driven development
As we’re nearing the end of this article I would like to talk

a little bit about Test Driven Development. It is a practice
of writing unit tests before writing actual code itself. Good
unit tests code coverage gives developers some great ad-
vantages of which I would like to focus only on some.

First of all code which is well tested can be easily
changed. Whenever we get a request for introducing
new functionality to our libraries we start by simply
adding appropriate tests to those we have already writ-
ten. Then we start thinking on how to actually change
the code. Due to ease of running automated tests over
and over again we can continuously find and fix bugs
on the spot making it easier to maintain the software.

Another interesting aspect of writing tests first tech-
nique is that it forces developer to look at the software
through the eyes of the client. Before writing any line
of code programmer thinks about the input and the
output. The focus is not on the nuances of technical so-
lutions, but on the observable behavior which adds to
the business value of the software.

Writing a lot of tests has some drawbacks of course.
Positive effects of extending functionality and main-
taining code base become visible only after longer pe-
riod of time. Therefore small projects may not benefit
from overhead associated with detailed writing of all
the test cases. Should the projects grow in size, though,
it may be difficult to introduce good TDD, as writing
tests for preexisting code can rarely produce expected
results. Unit tests written this way will always be taint-
ed with being written to work like the underlying pro-
gram, instead of enforcing behavior.

Conclusion
I feel that ability to write clean code is a vital part

of any programmer’s skillset. Developers with good
communication skills are highly sought after in the job
market as software development is a team sport. We
need to be able to communicate clearly to others what
are we working on. One of the most effective media of
communication is well written program which can tell
its own story in an intelligible way.

In this discipline best documentation is the source
code itself – its correctness is constantly checked by
the IDEs, compilers (or interpreters) and test runs. Com-
ments and other forms of documentation employing
natural language are prone to degeneration as the
code evolves – they can only grasp general idea of the
program, but not the actual algorithm but it is the algo-
rithm that we need.

We need to keep in mind that software development
often means more time spent reading code than actually
writing it. Therefore producing code which is easy to read
is an investment which will surely yield profit. To learn
more about the techniques of producing well-structured
code I recommend reading “Clean Code: A Handbook of
Agile Software Craftsmanship” by Robert C. Martin. It has
wealth of pragmatic information which I believe can be
useful to any developer regardless of experience.

Łukasz Kieda
Software Developer at S-Arts Poland working
on social networks and a hobbyist .Net devel-
oper. Student at AGH University of Science and
Technology.

http://artifexmundi.com

SOFTWARE DEVELOPMENT

76 02/2012	 en.sdjournal.org

As you can see in figure 1, an octree is created by
surrounding the entire data in question with an
axis aligned cube and then splitting that cube

into equal sized sub-cubes by using three axis aligned
planes which pass through the cubes’ center. This is
done recursively on the sub-cubes until an end condi-
tion is met: either number of data elements is smaller
than a threshold or a depth limit has been reached. The
data can be stored either in the leaf nodes or in the in-
ner nodes. This can be decided according to the appli-
cation requirements.

An octree is used in games to optimize rendering
and collision detection. In rendering optimization it
is used to cull objects that are out of the current view
frustum or that are occluded by other objects. In colli-
sion detection, an octree is used to group objects that
are close together and only perform the costly collision
test on relevant pairs of objects.

Problems
The utility of an octree can be seen when we try to

access a point from the data. Rather than going through
the list of all the points in the data set the point just has

to be compared against the bounding box of each of
the roots children, choosing the node whose bounding
box encloses the point and then recursively repeating
this process for each chosen node. It’s obvious that with
each level we go deeper in the octree we can safely dis-
card 7/8 of the remaining data because it’s irrelevant.

This structure offers many advantages, but it also
has many disadvantages. Its main disadvantage is
that it is difficult to use well with moving objects. It’s
pretty hard to keep moving objects in the octree be-
cause the cost of updating the objects location in the
tree can get pretty high. The update can be done ei-
ther by reinserting the object or by trying to find the
neighbor it has moved to by traversing backwards to
the common root and then back down. Both are time
consuming. Although traversal is usually logarithmic
in time, the cost of testing against the bounding box
of each node encountered ads a lot to the total time.
This is why some developers only use the octree to
store static data and use separate structures for dy-
namic objects.

Also, while this structure works well for point data,
it runs into some trouble when we talk about com-
plex data like polygons and meshes because these can
straddle over multiple cells of the octree. This can be
solved in multiple ways but each has its downside.

•	 Splitting the object in question – the splitting
plain doesn’t just cut the bounding box, but also
the objects in the box; downside: pretty complex
calculations;

•	 Saving the object in all the nodes it straddles in
– pretty simple, but you have to be careful not to
perform the processing you want multiple times on
same object; downside: redundant data;

Octrees
Octrees are structures that help in spatially partitioning large sets of data.
They can be viewed as an implementation of hierarchical clustering in which
the data is recursively split in smaller, more manageable chunks. Octrees
can have many uses but are mostly used in game development to speed
up certain tasks that would otherwise take too much time to complete.

Figure 1: Octree creation

Octrees

7702/2012	 en.sdjournal.org

•	 Save the object at the level of the octree where
it fits entirely in just one bounding box – also
simple, but its main downside is that some objects
might end up in the root because they are badly
positioned;

My solutions
Most of the time the octree is used as is, with no

modifications to surpass the disadvantages men-
tioned, but I have been researching this structure for
some time to come up with a solution to these prob-
lems. The following paragraphs present the ideas that I
have come up with.

For the problem with dynamic objects, I realized
that the most time consuming operation is finding the
neighbor in which the object has moved. I also realized
that the center of that neighbor can be found easily be-
cause we know the current center and the size of the
current node bounding box. So the only thing that was
needed was a way to link that center to a pointer to the
node. The idea that I had (and then found out it had
been done by Hanan Samet in the 80s and early 90s)
was to use a hash table: use a hash function (see code
listing below) to encode the coordinates of the center
of each node of the octree and store the pointer of that
node in a hash table using the encoded coordinates as
a key. This makes getting the neighbors’ pointer a con-
stant time operation.

The hash function I used is an adaptation of Rob-
ert Jenkins’ 96 bit Mix Function found on this website
http://www.concentric.net/~ttwang/tech/inthash.
htm : (Listing 1).

The first three lines of the functions code are added
by me as an adaptation. The rest is the normal Robert
Jenkins Mix function. I added the first lines because the
Mix function needs integers to work and I have floats
as coordinates so a cast was necessary and because I
needed the hash key to be different if two points that
had the same values but in a different order (p1(1.2, 3.4,
5.6) and p2(3.4, 5.6, 1.2) for example) where fed to the
function. That’s what the 0x7ed55d16 &, 0x165667b1 *,
0xd3a2646c ^ are for. The & 0xfffffff0 part is to mask
out the last few bits for floating point precision control.

Before we can get a neighbors’ pointer we need
to find which neighbor the object has moved too. An
ordinary node can have up to 26 neighbors and mak-
ing that many intersection tests with bounding boxes
is still time consuming. But in the paper “An Algorithm
for Hidden Surface Complexity Reduction and Colli-
sion Detection Based on Oct Trees” by Brent H. Pease,
a technique is described that can help us discard most
of the neighbors we should test. Out of the 26 possible
neighbors of a certain node we only have to test at
most 7 with this technique.

The idea is to see in which direction the object is
moving and consider only the nodes that are posi-
tioned along that direction. To do this we construct a
ray from the last position of the object to the new posi-
tion. The center of the current node can also be used
as a reference point instead of the old position. By tak-
ing the sign of each of the components of the ray we
can decide which of the six sides of the current node
bounding box the object might have passed. For ex-
ample if the x component of the ray is negative then
the side of the bounding box that is orthogonal to the
X axis of the world coordinate system and its’ corners
have a smaller x component then the center might
have been passed by the object. Using this on all three
components of the ray three of the six sides of the box
can be safely discarded leaving us to choose from only
7 neighbors instead of 26.

The only problem with this solution is that the com-
plete octree has to be created and hashed. Usually
when in a specific area of the scene there are fewer
objects the splitting into sub-cubes stops at a higher
level in the tree. But for the hash table solution to work
it is necessary to further split the nodes until a certain
depth has been reached. This is because during the
game a moving object might end up in one of those ar-
eas and a node that is on the same level as the current
node has to exist there for us to be able to move the
object in the new position. We could create the new

Llisting 1: Hash function for the coordinates of a
node center

int ComputeKey(float fa, float fb, float fc)

{

	 int a = 0x7ed55d16 &
(((int &)fa) & 0xfffffff0);

	 int b = 0x165667b1 *
(((int &)fb) & 0xfffffff0);

	 int c = 0xd3a2646c ^
(((int &)fc) & 0xfffffff0);

	 a=a-b; a=a-c; a=a (̂c >> 13);

	 b=b-c; b=b-a; b=b (̂a << 8);

	 c=c-a; c=c-b; c=c (̂b >> 13);

	 a=a-b; a=a-c; a=a (̂c >> 12);

	 b=b-c; b=b-a; b=b (̂a << 16);

	 c=c-a; c=c-b; c=c (̂b >> 5);

	 a=a-b; a=a-c; a=a (̂c >> 3);

	 b=b-c; b=b-a; b=b (̂a << 10);

	 c=c-a; c=c-b; c=c (̂b >> 15);

	 return (c);

}

http://www.concentric.net/~ttwang/tech/inthash.htm
http://www.concentric.net/~ttwang/tech/inthash.htm

SOFTWARE DEVELOPMENT

78 01/2012	

node on the fly but that implies we use some memory
operations which aren’t very cheap time wise (new and
delete are very slow operations).

For the straddling problem, there is a variant of oc-
trees that offer a great solution. They are called loose
octrees – the first mention of this structure is in this
conversation http://tulrich.com/geekstuff/partitioning.
html (The interesting part is at the bottom). The idea of
a loose octree is very simple once you understand the
normal octree. Simply loosen the node dimensions of a
normal octree. What this means is that you have a pri-
mary size for a node which is the normally computed
size (1/8 of the parent size) and then you have a sec-
ondary size which is a fraction larger than the primary.
How much larger depends on the application. I have
read that usually the size of one side of the secondary
boundary is twice the size of the primary boundary.

How does this solve the straddling problem? Well we
establish a restriction that the maximum radius an ob-
ject can have to be included in a specific node is half of
that nodes primary size. If an object is larger than that
it is stored in a higher level in the tree. Now, because of
the loose node size and this restriction, we don’t have
to store the object in multiple nodes. We know for sure
that if an objects center is in a specific node, that object
will not exceed the secondary boundary of the node.

So putting all of these ideas together (loose octrees,
hash table and neighbor elimination) we get an update
procedure that looks something like this: (Listing 2).

As you can see, using the loose octree and the neigh-
bor elimination technique, we don’t even have to do 7
bounding box checks as previously stated. We get the
exact center we need with just a few calculations.

Usage
So how do we use this structure after creating it and

establishing how to update it. Well it depends on what
we want to do. Do we want to use it for optimizing ren-
dering or collision detection?

To optimize rendering the first step is to send as little
unnecessary data to the GPU as possible. This means
that anything that isn’t visible should not be processed.
This includes polygons that are not in the current view
frustum, polygons that are occluded by other objects,
polygons that aren’t facing the camera etc.

Culling the polygons that are not in the current view
frustum is easy with an octree. Just create the frustum
and try to insert it in the tree: recursively check the
bounding box of each node for intersection with the
frustum. If an intersection occurs send the data stored
in that node to the GPU. If not, ignore it.

Listing 2: Update procedure for octree. This is run
once per frame for each object that has moved

Vector3 C; // current node center

Float L; // current node size

Vector3 Nx, Ny, Nz; // normals for test planes

Vector3 ObjPos; // current object position

// compute the direction the object
is relative to the node center

// this is so we don’t check the
planes that are opposite to the

// object relative to the node
center; those planes are irrelevant

Vector3 V = ObjPos – C;

Nx = V.x > 0 ? Vector3(1,0,0): Vector3(-1,0,0);

Ny = V.y > 0 ? Vector3(0,1,0): Vector3(0,-1,0);

Nz = V.z > 0 ? Vector3(0,0,1): Vector3(0,0,-1);

Float halfL = L/2;

// point on all the test planes

Vector3 P = Nx * halfL + Ny
* halfL + Nz * halfL;

Vector3 newC = C; // to store the new center

// if the current position of
the object is on the outside

// of the nodes bounding plane
add to the current center

// the size of the node in the
direction of the plane normal

If(Dot(Nx, (ObjPos + P)) >
0) newC += Nx * L;

If(Dot(Ny, (ObjPos + P)) >
0) newC += Ny * L;

If(Dot(Nz, (ObjPos + P)) >
0) newC += Nz * L;

// if it’s a new center move the object there

If(newC != C)

{

OctreeNode* pNode = hashTable.
GetNodePointer(newC);

pNode.Add(Object);

CurrentNode.Remove(Object);

}

http://tulrich.com/geekstuff/partitioning.html
http://tulrich.com/geekstuff/partitioning.html

Octrees

01/2012	

Occlusion culling is done fare and more easily with
z-buffers and back-facing polygons are quite easily
culled by todays’ graphic cards so the octree isn’t the
best option for these two scenarios.

Optimization for collision detection implies perform-
ing the complex calculations on as few pairs of objects
as possible. The idea is to do the calculations only on
objects that are close together: there is no use in do-
ing collision detection between the sword in the hero’s
hand and the box ten meters away. Octrees help here
because the objects are grouped according to their po-
sition. So we can easily find the objects that are close
together and perform the calculations only on those.

The process is similar to frustum culling, described
earlier: take each object that moved after the last frame
and recursively compare its’ bounding box with the
bounding box of each node encountered traversing
the tree. If the bounding boxes intersect add the ob-
jects in that node to a list of objects to compare too
and visit that nodes children. If not discard that node
and its’ children.

For loose octrees, both frustum and bounding box
intersection tests are done with the bounding box
formed by the secondary boundary (the larger box) be-
cause we have to make sure that all the relevant objects

are correctly processed, even object from neighboring
nodes that might straddle in the current node.

Conclusions
In this article I explained the basics of using an octree

in games and detailed some of my ideas regarding this
structure. There are many details I didn’t cover but this
can be a starting point for anyone trying to research
this subject further.

I believe this structure is a very powerful tool in
game development and once the basic functionality is
understood it is quite easy to implement.

Adrian Jurca

Adrian Jurca is an independent game developer,
passionate about engine coding. He’s eager to
learn and understand anything related to graphics
and physics for games. During the last five years
he’s been working on his own game engine in his
spare time. He currently develops plugins for CAD
software in an Autodesk partner company.

- A D V E R T I S E M E N T -

SOFTWARE DEVELOPMENT

80 02/2012	 en.sdjournal.org

Windows Azure is a good offer for sites and services
that need to scale. Windows Azure is Microsoft cloud
services system that offers the following services:

•	 hosting and scaling of web sites and background
services,

•	 cloud-based storage (blobs, queues and tables),

•	 SQL Azure database,

•	 SQL reporting services,

•	 cloud-based cache,

•	 enterprise service bus,

•	 access control services

For beginners or users with not so familiar with
cloud Windows Azure has good trial offers. Develop-
ers with MSDN library premium subscription get also
one small computing instance time for the time when
subscription holds. To find out more please visit http://
www.windowsazure.com/.

Cloud environment is similar to dedicated hosting but
it is still very different – your applications are deployed
to Windows Azure environment and host operating sys-
tem is in judge for creating virtual server instances for
you. Those instances my come and go but your site is
always up and running. We cannot control the work of
host system and that’s why we cannot count on local
resources kept in virtual server (like uploaded files in file
system). As we will see later then such dependencies
can be considered as bad practices because our solu-
tion is not independent from infrastructure.

When moving to cloud some questions are still fa-
miliar from multi-server scenarios:

•	 How to store session and application variables when
differents servers respond to requests in a same
session?

•	 Where we have to keep our data so that it is acces-
sible by all web front-end servers?

•	 How to organize caching?

•	 Where we should keep files?

•	 Where we should keep logs?

These questions get almost always easy answers
when we are hosting our applications in-premises. We
can use file shares, databases etc and we don’t really
consider these questions as a problem. These questions
will raise up as problems to solve when we are moving
to cloud. This is because for us many aspects of our sys-
tems are so normal – what do you meen I cannot save
file to disk on cloud? Yes, you can, but as host operating
system has no idea about your files (these files are not
part of deployment package) then in the case of new
virtual server these files are lost. When moving to cloud
we often need to change some aspects of technical de-
sign of our applications.

Example: Generalizing file access
In this article we will generalize file access so our ap-

plication can run on-premises, on shared hosting and
on Windows Azure and all we have to do is some con-
figuring work. We will start with simple page that offers
file upload and we end up with generalized file access.

Suppose we have simple ASP.NET page with file field
and upload button. The code for button click event is
defined like follows: (Listing 1).

Porting existing web applications
to Windows Azure
In this article we will generalize file access so our application can run
on-premises, on shared hosting and on Windows Azure and all we
have to do is some configuring work. We will start with simple page
that offers file upload and we end up with generalized file access.

Porting existing web applications to Windows Azure

8102/2012	 en.sdjournal.org

This code works fine but it has some problems:
•	 our web application is bound to storage implemen-

tation details,

•	 if we want to support also other storages then we
have to write new code everywhere where we ac-
cept file uploads,

•	 our forms get smarter and smarter and they are too
strongly dependent on underlaying infrastructure.

We need to separate our form and file upload logic
in this point and we need solution that allows us to
change file storage implementation without touching
code behind upload forms.

Analyzing file store
Basing on my experiences I come up with following

solution:

•	 we will bring in new term: file store that represents
some place where we can keep our files,

•	 as our application must not know details of file
store implementation and there can be more than
one implementation (for file system, for SharePoint
document library, for Windows Azure etc) we need
to define interface that works as contract between
application and file store implementations,

•	 we have to bring in some DI(What means DI ?)de-
pendency injection(DI) container so we can easily ask
correct instance of file store implementation,

•	 we have to standardize organization of file store so
all file store implementations can understand what
application wants to do.

Usually we have different types of uploaded files –
there can be documents, pictures, videos, user profile
images, customized stylesheets and so on. On Share-
Point we have document library for files, maybe even
more than one. On Windows Azure we will use blob
storage that has limited options for directory trees. As
this one is most limited we work out our file store im-
plementation with Windows Azure in mind.

On Windows Azure blob store account we have con-
tainers that contain blobs. Blobs will be the files we are
keeping in containers. Now let’s say that we need one
container for every type of uploaded file. I’m playing
just with one example scenario here and in this point
your analysis and considerations may be way different.
For our application we get the following containers:
•	 profile images
•	 documents

We need a way how to say to file store implementa-
tion what kind of file we are saving. Later we need to
ask URL of file when we need to send the file to brows-
er. And let’s don’t forget the fact that user can delete
and update files.

Defining file store interface
We have enough information to define contract be-

tween our application and file store implementations.
Here is our interface: (Listing 2).

Listing 1: Click-event of upload button
protectedvoid UploadCommand _ Click(object sender, EventArgs e)
{
var path = Path.Combine(Server.MapPath(“~/Files/Profiles/”), FileField.FileName);

if (File.Exists(path))
File.Delete(path);

using (var stream = File.OpenWrite(path))
 {
 stream.Write(FileField.FileBytes, 0, FileField.FileBytes.Length);
 }
}

Listing 2: File store interface and store type enum
publicinterfaceIFileStore
{
void DeleteFile(FileStoreTypeEnum storeType, string fileName);
void SaveFile(FileStoreTypeEnum storeType, string fileName, byte[] fileBytes);
string GetFileUrl(FileStoreTypeEnum storeType, string fileName);
}
publicenumFileStoreTypeEnum
{
 ProfileImage,
 Document
}

SOFTWARE DEVELOPMENT

82 02/2012	 en.sdjournal.org

Note. We are using enum because it is error prone
compared to strings and has its own type compared
to constants with primitive types. If we have a typeo
in enum member name in our code then code doesn’t
compile.

File store: Disk based implementation
As a first thing let’s start with file store that is keep-

ing files on disk. We already have some code that saves
files to disk and this concept is most familiar to us. We
will define root path of file store in application setting
called DiskFileStore.RootPath. If you want to be more
correct then you can define your own configuration
section and create all related classes to read configura-
tion data (Listing 3).

Before enjoying the full power of our dile store solu-
tion let’s write also file store implementation for Win-
dows Azure.

File Store: Windows Azure blob storage
implementation

As we saw before Windows Azure blob storage has
the following structure:
•	 Blob store account

•	 Container
•	 Blob

By our analysis containers are defined by StoreType
enumerator. Files are handled as blobs. Here is our Win-
dows Azure blob storage with folders (you can use free

Listing 3: DiskFileStore class
publicclassDiskFileStore : IFileStore
{
protectedstring RootPath { get; set; }

public DiskFileStore()
 {
var rootPath = ConfigurationManager.AppSettings[“DiskFileStore.RootPath”];

 RootPath = HttpContext.Current.Server.MapPath(“~/” + rootPath);
if (!RootPath.EndsWith(“/”))
 RootPath += “/”;
 }

publicvoid DeleteFile(FileStoreTypeEnum storeType, string fileName)
 {
...
 }

publicvoid SaveFile(FileStoreTypeEnum storeType, string fileName, byte[] fileBytes)
 {
var filePath = GetFilePath(storeType, fileName);
if (File.Exists(filePath))
File.Delete(filePath);

using (var stream = File.OpenWrite(filePath))
 {
 stream.Write(fileBytes, 0, fileBytes.Length);
 }
 }

publicstring GetFileUrl(FileStoreTypeEnum storeType, string fileName)
 {
...
 }

protectedstring GetFilePath(FileStoreTypeEnum storeType, string fileName)
 {
if(storeType == FileStoreTypeEnum.ProfileImage)
returnPath.Combine(RootPath + “Profiles/”, fileName);
if (storeType == FileStoreTypeEnum.ProfileImage)
returnPath.Combine(RootPath + “Documents/”, fileName);

thrownewArgumentException(“Cannot find store folder “ + storeType, “storeType”);

 }
}

Porting existing web applications to Windows Azure

8302/2012	 en.sdjournal.org

version of CloudBerry Explorer for
Azure Blob Storage to manage your
blobs): (Figure 1).

Now let’s write file store imple-
mentation for Windows Azure blob
storage (Listing 4).

Now we have file store also for
Windows Azure and it’s time to
change our web application so it
uses the file store implementation
we want without affection web ap-
plication code.

Listing 4: AzureBlobFileStore
publicclassAzureBlobFileStore : IFileStore
{
privatereadonlyCloudStorageAccount _ storageAccount;
privatereadonlyCloudBlobClient _ blobClient;

public AzureBlobFileStore()
 {
var accountName = ConfigurationManager.AppSettings[“AzureBlobStore.AccountName”];
var key = ConfigurationManager.AppSettings[“AzureBlobStore.Key”];

var asas = newStorageCredentialsAccountAndKey(accountName,key);

 _ storageAccount = newCloudStorageAccount(asas, true);
 _ blobClient = _ storageAccount.CreateCloudBlobClient();
 }

publicvoid DeleteFile(FileStoreTypeEnum storeType, string fileName)
 {
...
 }

publicvoid SaveFile(FileStoreTypeEnum storeType, string fileName, byte[] fileBytes)
 {
var container = GetContainer(storeType);
var blob = container.GetBlobReference(fileName);

 blob.UploadByteArray(fileBytes);
 }

publicstring GetFileUrl(FileStoreTypeEnum storeType, string fileName)
 {
...
 }

privateCloudBlobContainer GetContainer(FileStoreTypeEnum storeType)
 {
if (storeType == FileStoreTypeEnum.ProfileImage)
return _ blobClient.GetContainerReference(“profiles”);
if (storeType == FileStoreTypeEnum.Document)
return _ blobClient.GetContainerReference(“documents”);

thrownewArgumentException(“Cannot find store container “ + storeType, “storeType”);
 }
}

Figure 1: CloudBerry Explorer for Azure Blob Storage

SOFTWARE DEVELOPMENT

84 02/2012	 en.sdjournal.org

Using Structuremap
As stated before we need DI container that finds

correct instance of file store implementation so our
application only knows the interface. I am using
Structuremap in this example as DI container and in
this example we will use mappings from web.config
file (Listing 5).

To get mappings loaded we add the following code
to global.asax file: (Listing 6).

And here is the code for our upload button click
event: (Listing 7).

Now we have are in point where file store is sepa-
rated from our application. Depending on our needs
we can change Structure map configuration and our
application uses automatically the file store imple-
mentation we want. We can use disk based file store
on share hosting. We can use Windows Azure blob
storage in Windows Azure and also in shared host-
ing. It really depends on our current needs what file
store we want to use.

Conclusion
Porting web applications to cloud can be challeng-

ing because we need to work hard to distantiate built-
in depencies of infrastructure to separate classes or

libraries. Using dependcy injection frameworks we
can easily support different implementations of same
interface and use cloud implementations of classes if
we need to use cloud services.

One thing to note – having implementations for
cloud services doesn’t mean that we have to host our
application on Windows Azure. We can run our ap-
plication in premises and scale only some parts of it
using cloud services.

ABOUT AUTHOR

Gunnar Peipman

Gunnar Peipman is IIS/ASP.NET MVP from Estonia.
Currently working at Estonian department of Attido
Ltd, Finland as .NET solutions architect and tech
lead. Gunnar spends his free time on blogging,
playing with new technology, visiting technical
conferences and building Estonian Microsoft com-
munity portal. If possible, Gunnar is also traveling
and visits different metal festivals with friends.

Listing 5: Structuremap mappings in web.config file
<StructureMap>
<AddInstance
Key=”AzureBlobFileStore”
PluginType=”ArticleSamples.IFileStore, ArticleSamples”
PluggedType=”ArticleSamples.AzureBlobFileStore, ArticleSamples” />
<!--AddInstance
 Key=”DiskFileStore”
 PluginType=”ArticleSamples.IFileStore, ArticleSamples”
 PluggedType=”ArticleSamples.DiskFileStore, ArticleSamples” /-->
</StructureMap>

Listing 6: Application start method in Global.asax file
void Application _ Start(object sender, EventArgs e)
{
ObjectFactory.Initialize(container =>
 {
 container.PullConfigurationFromAppConfig = true;
 });
}

Listing 7: Button click event in Upload.aspx code-behind
protectedvoid UploadCommand _ Click(object sender, EventArgs e)
{
var fileStore = ObjectFactory.GetInstance<IFileStore>();
 fileStore.SaveFile(FileStoreTypeEnum.ProfileImage, FileField.FileName, FileField.FileBytes);
}

SOFTWARE DEVELOPMENT

86 02/2012	 en.sdjournal.org

Object/Relational Mapping, or O/RM, is a hot top-
ic. Talk is everywhere, it seems that new O/RM
libraries pop up every month - everyone is writ-

ing their own, and Microsoft itself is putting a consider-
able amount of its weight behind its own solution. So,
what exactly is an O/RM for, and why should you care?

If you’re like me, you’re probably accustomed to
starting your projects by defining a data model, that
is, after you have a set of well-defined requirements to
guide you. Whether you start from an Entity-Relational
model or go directly to the physical model is probably
a matter of either personal preference, company policy
or the desire to have something which is not tied to
a particular database vendor: the E-R model is pretty
good at that. You define your entities, attributes and
associations to represent the concepts that you wish to
save in the database. If you start from an E-R model,
you must generate the actual physical model for each
of the RDBMs that you will be targeting, admittedly, in
most cases, it may be just one.

Then comes coding. If you’re lucky enough to only
have one RDBMS to be concerned about, it’s all a matter
of separating the database access code from the rest of
it and having it organized, consistent and correct; oh,
and, of, course, you have to actually learn how to do
what you want to do with your data: let’s face it, Object-
Oriented Programming (OOP) developers aren’t usu-
ally also SQL developers, although some of the former
may have more than a slight idea of how to accomplish
things. It also happens that knowing how to get some-
thing done (effectiveness) does not mean that it is done
the best way (efficiency). Then you have to worry about
security – those nasty SQL injection attacks – and per-
formance. When you finally manage to get things right,

that’s when you receive the good news that there’s an-
other customer interested in your product. But, alas, he
wants to use a different RDBMS. And it doesn’t support
identity fields, and date fields are dealt with differently,
and there’s no Boolean data type...

Enter O/RM. In order to understand what it really is
about, you must think about things rather differently,
and one way to think about software development is
through Domain-Driven Design.

Domain Driven Design
Domain-Driven Design (DDD) is a term coined by

Eric Evans in his seminal work, not surprisingly titled
Domain-Driven Design: Tackling Complexity in the
Heart of Software. In it, he postulates that complex
systems should be based on class models, all concepts
should be represented by traditional OOP concepts
and persistence itself is merely an aspect of the system
(one that must be dealt with explicitly, mind you). Do-
main-Driven Design, as O/RM, is not tied to any specific
computer language, but it is tied to OOP.

Following the DDD approach, instead of defining a
data model, you start by defining a class, or domain,
model. I think everyone will agree that this is also RD-
BMS-independent; this has also an advantage: class
models are much richer than data models, whether
they are E-R or physical one. Just think for a second: how
do you represent inheritance in table diagrams? How
about abstract classes or virtual methods? And interfac-
es? All of this comes naturally to OOP developers, but
there is no standard way – or there are several standard
ways, which is the same - to accomplish it in the rela-
tional world. Also, in relational models, you think about

O/RMs Dissected

What You Will Learn
•	 What is Object/Relational

Mapping
•	 What is Domain Driven Design
•	 When to use an O/RM
•	 When not to use an O/RM

What You Should Know
•	 Object-oriented programming
•	 Database concepts

O/RMs Dissected

8702/2012	 en.sdjournal.org

structure, not behavior, while in OOP, unless you have
an anemic model, you also specify the operations that
go along with your classes and can even throw in some
additional metadata. This is known as the Impedance
Mismatch, the essential difference of nature between a
relational model and an object-oriented one, and that is
precisely the reason why O/RM exists.

O/RM
The first Object/Relational libraries appeared in mid-

90s for the SmallTalk and, later on, the Java languages.
The concept has matured a lot since then, and gained
a legion of followers as well as detractors. It exists in all
major languages, provided they are object-oriented, in
many flavors.

O/RM goes along very well with DDD, as you can
imagine: you focus on your classes, which are part of the
same universe that you are used to, along with graphi-
cal controls and network APIs. What O/RM offers you is
an abstraction around database calls and SQL queries,
shielding you from the actual RDBMS details, and thus
allowing you to move your code seamlessly between
different vendors, without changing a line of code – af-
ter all, all you are doing is instantiating classes, setting
property values and calling methods. Classes (named
entities in O/RM terminology) get properly translated
to either tables or views, scalar types to database-spe-
cific types, properties to columns and object instances
to physical records; associated records are converted to
collections or complex type properties (other entities).
All your code is checked at compile time and you can
even analyze it for best practices, style or conventions;
you trust your O/RM to translate it to the RDBMS that
you are targeting in the best possible way, applying
best practices such as parameterized queries, usage of
parameters and indexes, and so on. O/RM exists for all
languages that support OOP, from JavaScript (true!) to
C#, and from PHP to C++. When you run your program,
it turns your code into plain old SQL.

I’ve been talking about DDD, which means class-
es first, but some O/RMs also allow you to work with
tables first, that, the traditional way. In this case, you
have to generate the classes that map to your data
model, define how this mapping is done and adjust
some database-specific settings. The class and map-
ping generation can be either done manually or with
a helper tool, of which there are several ones available,
both commercial as well as free, quite useful if you have
lots of tables. With classes first, the O/RM tool can di-
rectly generate the data model for you or produce a
data definition language (DDL) script for you to run at a
later time. Some O/RMs are even smart enough to de-
tect changes to the class model that are not present in
the database and apply changes to it, for example, new
properties added. You typically don’t need to be con-
cerned about the generated data model, but you do

have something to say: for example, in order to repre-
sent class inheritance, you have three canonical forms,
as described in Martin Fowler’s Patterns of Enterprise
Application Architecture:

•	 Single table inheritance: this means all properties for
base and descending classes are stored in a single
table, on which a discriminator column is used to indi-
cate the actual type of each record; many nullable col-
umns are likely to exist, for each of the properties of a
descending class that do not exist in the other classes;

•	 Class table inheritance: base properties are stored
in a table, and properties specific to each class are
stored in their own tables; both tables share the
same primary key column;

•	 Concrete class inheritance: no table for the base
class exists, and each concrete class gets its own
table with all of its properties converted to columns;
you must take care not to use the same primary key
for two records on any of the tables, because this
would prevent you from loading a concrete instance
of a class from a base one and its identifier: the O/
RM would be confused because it would find more
than one record, on different tables, and would not
be able to make the decision of which to choose.

There is no rule as to which one is best; you must
make your own decision, and there are arguments for
and against each strategy.

Listing 1: Entity classes in C#, which are the same
regardless of the chosen class inheritance pattern

SOFTWARE DEVELOPMENT

88 02/2012	 en.sdjournal.org

Common O/RM Services

In OOP, you have a multitude of
techniques that you can use, from
Aspect Oriented Programming to
Service Oriented Programming,
through Dependency Injection and
Inversion of Control, to name just
some of the currently most popular.
O/RMs also bring along some specif-
ic services which can be quite useful,
namely:

•	 Change tracking: the capacity to
detect that an object instance
loaded from a database has been
changed and needs to be saved
back; most of the time this is done
automatically;

•	 First level cache: loaded class in-
stances are stored on a memory
cache, to avoid the performance
penalty of instantiating new in-
stances whenever the same re-
cord is retrieved;

•	 Unit of work: the O/RM keeps
track of the objects that belong
to the database and saves (inserts,
updates, deletes) them in an or-
derly, atomic way, respecting their
dependencies: dependent in-
stances are stored after indepen-
dent ones;

•	 Lazy loading: properties, associ-
ated collections and classes are
loaded only when (and if) they

Figure 1: A simple class model

Figure 3: A data model using the class table inheritance pattern

Figure 4: A data model using the concrete class inheritance pattern

Figure 2: A data model using the
single table inheritance pattern

O/RMs Dissected

8902/2012	 en.sdjournal.org

are accessed, no additional explicit database call is
required, and no unnecessary loading occurs if not
necessary;

•	 DB-independent querying: getting data from the
database without knowing exactly how it is stored,
just supplying the desired entity type (or even de-
fining a new one) and some OOP-based conditions;
it is even possible to use stored procedures in some
O/RMs;

•	 Event handling: it is possible to be notified when-
ever an instance is about to be/has just been saved,
deleted or updated;

•	 Batching: inserts, updates and deletes are sent to
the database in a batch, so fewer commands are
sent;

•	 Mappings: this is how you translate your tables and
views to classes; even if you change the underlying
database names and structures, you may well be
able to keep your existing classes with no changes,
just by changing the mapping.

Most of these concepts are also described in detail
in Patterns of Enterprise Application Architecture, and
I strongly advise you to have a serious look at it.

Bear in mind that O/RM is not standard, and al-
though you can expect to find most of these services
in modern products, they will probably not act exactly
the same.

Decision Factors
So, with all these bells and whistles, is O/RM the an-

swer for all your problems? It depends. What it is for
sure is just another programming abstraction that you
may use. For example, an O/RM is not, and should not
be used:

•	 A business logic framework: it typically offers you
no more than plain old classes, you have to code the
business rules yourself;

•	 As a general purpose Extraction, Transformation and
Loading (ETL) tool: it is generally not suited for deal-
ing with thousands (or more) simultaneous instances
in memory, having to instantiate, track changes and
possibly save or update a large number of instances
can result in poor performance;

•	 If extreme performance matters, you’re better off
with stored procedures, views and database-specific
techniques; typically O/RMs only support standard
or widely adopted operations;

•	 For reporting, the dynamic SQL generated by the O/
RM may be suboptimal, for example, it may bring
along more data than you actually need;

•	 When you must use triggers or other “magical” and
specific database concepts, which can confuse the
O/RM;

•	 The developer has more knowledge in SQL that in
OOP;

•	 In scenarios where the SQL is not known before-
hand and dynamic SQL generation is required.

Having said that, some typical uses and benefits of O/
RMs, in no particular order, are:

•	 When RDBMS independence is a requirement;

•	 Focus is on DDD;

•	 Create, Read, Update, Delete (CRUD)-style
operations;

•	 Developer has not a great knowledge in SQL, but
does have in OOP;

•	 Changes to the database structure are expected,
and code should be maintained with as few chang-
es as possible;

•	 If you want no external artifacts other than the code
itself;

•	 You are free to reuse some of your classes from proj-
ect to project, even if they use different RDBMSes,
which is DRY-friendly;

•	 IDE refactoring, including of queries, is, of course,
fully supported, which normally does not occur
with, say, SQL text files;

•	 Everyone that knows OOP can read and understand
code that uses O/RM for persistence.

Common Misconceptions
For some users, O/RMs have a bad reputation of be-

ing slow, not efficient and of doing things they weren’t
supposed to. From my experience, this mostly results
from either poor knowledge of what an O/RM exists
for, not using the right patterns or having inappropri-
ate configuration. Giant companies such as Microsoft,
Oracle and others are using them with success, so why
can’t we? On the other hand, despite its apparent sim-
plicity – converting properties to columns and entities
to tables - , a modern O/RM is a complex beast, and
deciding to implement your own can often result in
pain and sorrow.

SOFTWARE DEVELOPMENT

90 02/2012	 en.sdjournal.org

O/RM Choices
You have a number of choices if you decide to take

the O/RM path, provided your use case qualifies for it.

First, you have to choose the O/RM solution, and
whether you want to go for a commercial or a free and
perhaps even open source solution. Some aspects that
you should take in consideration when you make this de-
cision are:

•	 Support for your technology of choice (Java, .NET, etc);

•	 Maturity of code: is this a first version or a mature
one? How often do new versions come out? How
fast are bugs fixed?

•	 Choice of mapping types: choices are XML (less intru-
sive, not strongly typed, not compiled), code-based
(strongly typed, checked at compile time) and attri-
butes/annotations (usually more tied to a particular
O/RM product);

•	 Specific functionalities that may exist in one O/RM
product and not on another;

•	 Support for RDBMSes that you wish to target;

•	 The existence of IDE-based plugins or third-party
tools for entity definition and code and mappings
generation; this is of utmost importance if you intend
to have a great number of entities, since generating
all of these (plus their mapping code) is troublesome
and error-prone;

•	 Quality of API documentation and samples;

•	 Usage of plain old classes instead of having to imple-
ment a particular interface or inheriting from an ab-
stract base class; this may or may not be of importance
to you, most of the time, we can live with both options;

•	 Existence of communities of users that can help you
overpass problems and avoid common pitfalls;

•	 Possibility of commercial support;

•	 Support for class first and data first models (if rel-
evant to you);

Reliability of supplier: generally speaking, one should
expect that a well-known software house will not drop
support for an existing version of a product, which may
not occur with individually-developed open source
projects, but we all know that this is not always the case.

The second choice is if you want to go from class
model first or from data model first. Not all O/RMs sup-
port both of these models, you must make a decision
consistent with the solution you picked first.

Finally, you must choose how to map your domain
model to the database. With mapping by XML you are
decoupling your classes from the O/RM product, so
in theory you can even use them with other products.
Mapping by code is an option that has the advantage of
being refactor-friendly: if you choose to change a prop-
erty’s name, the mapping will also be updated to reflect
the change, and it also is product-independent. The at-
tributes/annotations solution is generally not portable
among O/RMs, which may not be a problem after all, but
does introduce a strong dependency between your class
project and the O/RM. Also, not all O/RMs support this.

State of the Art
Some of the current trends in O/RMs, implemented

in some of the latest product versions, seem to be:

•	 Automatic configuration of mappings between the
database and the entity classes; this relies on con-
ventions, which may be overridden, but generally
are a good starting point;

•	 Validation of entities prior to saving them;

•	 Generation/updating of the data model based on
code changes to entities (on class first model);

•	 Usage of “naked”, plain old classes for your entities;
this means no base class or interface is required.

Conclusion
The O/RM is a welcome addition to a developer’s tool-

box. It is everywhere, and indeed can introduce great
benefits, which can dramatically cut your development
effort and avoid future pains. Remember, however, that
just because you have a hammer, not everything is a nail.
Study carefully your problem and see if it really helps, if
it doesn’t, good old SQL is also here to stay.

Ricardo Peres

Ricardo Peres has more than 12 years of
experience in software development. He works
for a multinational, Portugal-based company
called Critical Software, where he develops
software mostly with Microsoft technologies.

He writes regularly in his blog,
Development With A Dot,
especially on ASP.NET and NHibernate, and
can be reached at rjperes@hotmail.com or
followed at https://twitter.com/#!/RJPeres75.

http://weblogs.asp.net/ricardoperes
mailto:rjperes@hotmail.com

http://www.strategerygames.com/

SOFTWARE DEVELOPMENT

92 02/2012	 en.sdjournal.org

How we can use Social Networks
I wanted to outline my thoughts on how we as de-

velopers can leverage social media to our advantage
whilst we do a variety of things. The reason I want to
do this is that whilst design and gaming industries have
leveraged social media well, as developers we are may-
be falling behind somewhat.

I will be dealing with the three major social media
sites at the moment, Twitter, Google+ and Facebook
– each of these is different enough to warrant its own
section but the majority of the techniques I will be
touching on will be transferable to other networking
websites.

For each site I will look at the core things we as de-
velopers want to do on the web (or at least I want to do
as a developer!). These are
•	 Getting help – Asking questions on specific or

general programming topics.
•	 Showing off – Displaying your current work and get

feedback on it.
•	 Finding work – Looking for part-time or full-time

work, or consulting positions.
•	 Socialising – Meeting like-minded developers.

To get the most out of this article you should already
have a decent working knowledge of the three social
networks, however even if you don’t have an account
on them or are a relative novice I would hope you will
still get something from this.

Without any further ado, let’s jump in with the first
social network.

Twitter
Twitter is a hosepipe of information, next to useless

at archiving various snippets of information but excel-
lent for dipping into every so often to take a look at
your own personal Zeitgeist.

Twitter has the notion of a “one-way follow”, which is
excellent as you can follow as many people as you want

both in and out of our industry without the intimacy of
a Facebook friend request, for example. Furthermore,
the larger your follow base, the greater chance that
these tips will work.

With that in mind let me first quickly discus how
to get a good following on Twitter – the first thing to
know is that numbers are probably not the best met-
ric for you on this, the best metric is how people are
engaged with you – that is how often people reply to
you and how often people retweet (share) your stuff.
To ensure people are engaged by you, tweet high qual-
ity content, be it in the form of links or 140 character
words of wisdom. At the risk of sounding like a “self-
help” book, to be engaged with you first have to be
engaging.

Assuming you have amassed a following of some
sort on Twitter the next thing is how do we utilise it in
the four areas outlined above.

Getting help

Getting help on twitter is surprising easy, you just
need to ask for it. “If your question can be written in
140 characters or under then do so, but if not be sure
to post it somewhere people can easily access via a link
in your tweet. Unlike other networks were there feels
like there has to be a little more quid-pro-quo Twitter is
seen to be more throw away and people are happy to
give help when they can.

Twitter has a notion of sharing called retweeting – if
you like what someone has said you can share it with
your followers using a retweet button, this posts what
they have said along with attribution to the original au-
thor of the tweet.

If you want people to share your question with their
Twitter followers (always a good thing) be mindful that
not everyone uses the new retweet functionality and
still prefer to put RT @your_handle, with this being the
case try and leave maybe 20 characters free to allow
them to do this without having to edit your tweet.

How we can use Social Networks
Some of us don’t like to admit it but the social element of the web has
really blown up in the past few years and social media looks like it is
here to stay.

How we can use Social Networks

9302/2012	 en.sdjournal.org

Whilst people are generally willing to help, remem-
ber to respond to any replies you get, even if the infor-
mation supplied ended up not helping you.

Because Twitter is like a hosepipe there is a temp-
tation to repost your question multiple times because
the assumption is new people will see it each time,
whilst this is kind of true you shouldn’t go overboard
with reposting – it will annoy the regulars.

Given the post restraints posting up code isn’t really
an option, so I would recommend using something like
jsfiddle.net or pastebin.com

Showing off

Showing off your work used to be a lot easier on
Twitter than it is today, the coming of the URL shorten-
er has meant that now an average Twitter feed is awash
with hundreds of bit.ly links that are meaningless.

There are three things I can mention to try and en-
sure that your link gets clicked on and shared:

Ensure that your content is good. It may seem like
a no brainer, but you want to avoid the temptation of
posting every little code tweak and making it sound
like a real game changer.

If your content is hidden behind a link give it a good
title, it should reflect the content but the more descrip-
tive you can make it the better – hash tags (#likethis)
are the primary way to categorise content on Twitter,
use them appropriately to mark up your tweet for oth-
ers to find.

Post when people will see – obviously Twitter is an
international thing and you will likely have an interna-
tional audience, but what I mean is if you are trying to
post something that you want your local peers to no-
tice and you have just made your final code commit at
3AM, probably wait until a more sociable hour before
you start posting about it.

Finding work

Finding work on Twitter is a bit of a mixed bag. On
the negative side there is a tiny signal-to-noise ratio--
the amount of recruitment agents sending spam and
unskilled programmers claiming everything under the
sun is quite frankly, depressing. But on the more posi-
tive side, it has never been easier to market yourself as
an expert as the barrier to entry is essentially nil. Simply
sign up for a free github account, post some code on-
line, and share it-- voila!

As mentioned, spammer recruitment agents are an
issue, so be wary of any unsolicited tweets.

Socialising

I have found Twitter to be one of the harder social
networks to properly socialise on, one the one hand
because of the slew of mobile apps and the massive
user base, it should be easy to arrange to do things
but I have found that due to the throw away nature of
many of the relationships on Twitter doing proper net-
working and socialising can be difficult.

One way to try and keep on top of things would be
to use the List feature to group similar people togeth-
er, I try and do it based on geography and profession
(so, for example I have a Northern Irish Web Developer
group)

Google Plus
Although Google Plus is the newest out of the three

social sites covered here, it is already proving its chops
and worth for developers.

Like Twitter there is a one-way follow mechanism,
which affords many of the same positives and nega-
tives. Also like Twitter there is a notion of lists called
circles.

Circles allow you to categorise your contacts into
easy-to-view groups of your choosing. While the per-
son will know if you add them to a circle, they will never
know the name of the group that you choose to assign
them (which is mega-handy when an annoying family
member or co-worker wants you to follow them, just add
them to the ‘people-to-ignore’ circle and you are done!’).

All my developer buddies and contacts go into a
rather general circle of mine called ‘Nerds’ I use this cir-
cle when I want to see only industry related Google Plus
posts (or at least posts from industry related people)

You can also chose who gets to see your content,
which means you don’t have to bore one circle of
friends with content more appropriate for another.

Getting help

I haven’t seen too many people attempting to get
help on Google Plus, I think down to the relatively
small user base at the moment coupled with the fact
that many people are still finding their feet with where
Google Plus sits within their social networks.

Certainly having more room to play with is a big
plus, but there is no real code friendly formatting, so
examples would need to be linked offsite.

One way you can get help is to post it publicly but at
the same time also include email addresses of contacts
you think might be able to help.

SOFTWARE DEVELOPMENT

94 02/2012	 en.sdjournal.org

Showing off

You would think that the issues with getting help
would carry across into showing off but I don’t think
this is the case.

A lot of people seem to be using Google Plus as a
blogging platform, and really when you break it down
all the right components are there, the ability to easily
share and comment on posts means that your content
has the ability to go viral and the extra leg room pro-
vided by the content limits (I am not sure what the limit
is but I am pretty sure this article could fit into one up-
date) is a real plus.

People seem happy enough sharing and plussing ar-
ticles, sharing definitely seems to happen far more on
Google Plus than it does on Facebook.

Finding work

To be honest I have yet to see Google Plus being
used by either recruitment agents in any strong way or
by someone specifically looking for work, the fact many
people do use it as a personal blog though means they
have easily accessible content for potential employers
to look at.

Naturally as time goes on there will be a greater link
between all the Google products, so having an up-to-
date profile on Google Plus will be useful to market your-
self. The profile is actually one area that Twitter really
lacks, with Google Plus you can give a pretty complete
bio including current and previous job roles, this isn’t
quite as refined as Facebook’s, but it is still pretty good.

Socialising

Socialising on Google Plus is easier than on Twitter,
I think this is down to the length of the posts and the
fact there is more information stored on Google Plus
about people, sharing links and videos.

There have been some pretty high profile cases
were people have badmouthed companies they have
worked for in what they thought was a private post
but with the wrong selection made it ended up being
public, and once something is shared by someone else
there doesn’t seem to be a way to revoke permissions –
just a word of warning!

Facebook
Facebook is the oldest of these three sites and cer-

tainly the one with the greater penetration.

Unlike the previous networks Facebook has a two-
way follow mechanism, but like the other two there is a
notion of grouping people into lists.

Having the two way follow makes it harder to make
new connections on your personal profile as you al-
ready know the person from another walk of life, that
being said there are still ways developers can leverage
the massive user base of Facebook.

Getting help

Most companies and organisations now have some
sort of Facebook page, which makes getting help from
the source usually fairly easy – unlike Google Plus or
Twitter where it isn’t obvious to others if companies
have got back to people, Facebook makes it fairly ob-
vious if someone has replied to a comment, which in-
creases accountability.

There are also several well established groups on
Facebook for various programming languages, frame-
works and other tech-related topics – the groups are
community driven and usually fairly receptive to ques-
tions and giving help.

On the down side, the reach your personal profile
has is limited to the number of friends you have, as
a result getting help from Facebook doesn’t feel like
it could go just as viral as if you got help from the
other.

Showing off

The easiest way to show off on Facebook is to cre-
ate a page for your product or company, using the
now ubiquitous like button can get you a selection of
followers that have the potential to make your posts
somewhat viral (most engagements users have with
your page gets logged into their timeline).

Unlike Twitter and Google Plus comments on
Facebook have a slightly more permanent feel to
them, so you have to be ready to receive negative
criticism and remember that your response to it will
be fairly public.

Finding work

Finding work on Facebook is a bit of a no go, be-
cause the platform has been set up to really cater to
friendships there really isn’t a notion of using it to find
work. Also because family members and friends are
on it, sometimes it is hard to keep your overall profile
professional, so advertising your Facebook might not
always be to your advantage.

Recently Facebook have brought in a notion of
lists, which lets you group friends together into man-
ageable subsets, potentially you could share some
information with one group and not the other but
I have yet to hear of anyone having success doing
something like this to find work.

9502/2012	 en.sdjournal.org

Of course that isn’t to say there isn’t a group set
up in your local area were people post job offers or
requests, but that isn’t something baked into the
website.

Socialising

Socialising is what Facebook was designed to do,
and I think it does this hands down better than any
of the other website I have discussed today.

With the ability to tag and add locations to pic-
tures, videos and posts and the fact that connections
you have made on Facebook are presumably already
your friend or at least acquaintance definitely make
the site feel more geared up to socialising.

Facebook also has an easy-to-use event tool,
which lets you create and invite people to events. I
have seen this used successfully for local meetups of
different user groups and even for larger developer
conferences and talks.

Conclusion
The barrier to entry on the sites I have talked about

is low, but only if you take those first steps and just
start producing content and engaging others.

With that said, that pretty much sums up my
thoughts on social networks and how we can use
them as developers, hopefully it has been some help
and I would encourage people to dig into them and
explore the possibilities, with a slew of apps and pl-
ugins available for these social networks and others
there is just no barrier to entry.

I guess the last thing I want to do is ask you to
share this journal on your social networks of choice
and add me at the following addresses
[https://twitter.com/#!/tosbourn/]
[https://plus.google.
com/108259413842523229630/posts]
[https://www.facebook.com/toby.osbourn]
I will hopefully get chatting to you soon!

Toby Osbourn
Toby Osbourn is a web developer specializing in
fast and secure PHP who loves to dabble in the
front end when he gets chance. You can catch
up with him on Twitter and his personal blog.

https://twitter.com/#!/tosbourn/
https://plus.google.com/108259413842523229630/posts
https://plus.google.com/108259413842523229630/posts
https://www.facebook.com/toby.osbourn
http://twitter.com/#!/tosbourn
http://tosbourn.com/
http://tosbourn.com/

